2 resultados para pleomorphic xanthoastrocytoma

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine the most adequate number and size of tissue microarray (TMA) cores for pleomorphic adenoma immunohistochemical studies. Eighty-two pleomorphic adenoma cases were distributed in 3 TMA blocks assembled in triplicate containing 1.0-, 2.0-, and 3.0-mm cores. Immunohistochemical analysis against cytokeratin 7, Ki67, p63, and CD34 were performed and subsequently evaluated with PixelCount, nuclear, and microvessel software applications. The 1.0-mm TMA presented lower results than 2.0- and 3.0-mm TMAs versus conventional whole section slides. Possibly because of an increased amount of stromal tissue, 3.0-mm cores presented a higher microvessel density. Comparing the results obtained with one, two, and three 2.0-mm cores, there was no difference between triplicate or duplicate TMAs and a single-core TMA. Considering the possible loss of cylinders during immunohistochemical reactions, 2.0-mm TMAs in duplicate are a more reliable approach for pleomorphic adenoma immunohistochemical study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metastasizing pleomorphic adenoma (MPA) is a rare tumour, and its mechanism of metastasis still is unknown. To date, there has been no study on MPA genomics. We analysed primary and secondary MPAs with array comparative genomic hybridization to identify somatic copy number alterations and affected genes. Tumour DNA samples from primary (parotid salivary gland) and secondary (scalp skin) MPAs were subjected to array comparative genomic hybridization investigation, and the data were analysed with NEXUS COPY NUMBER DISCOVERY. The primary MPA showed copy number losses affecting 3p22.2p14.3 and 19p13.3p123, and a complex pattern of four different deletions at chromosome 6. The 3p deletion encompassed several genes: CTNNB1, SETD2, BAP1, and PBRM1, among others. The secondary MPA showed a genomic profile similar to that of the primary MPA, with acquisition of additional copy number changes affecting 9p24.3p13.1 (loss), 19q11q13.43 (gain), and 22q11.1q13.33 (gain). Our findings indicated a clonal origin of the secondary MPA, as both tumours shared a common profile of genomic copy number alterations. Furthermore, we were able to detect in the primary tumour a specific pattern of copy number alterations that could explain the metastasizing characteristic, whereas the secondary MPA showed a more unbalanced genome.