2 resultados para perennial ryegrass
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
It is well known that trichomes protect plant organs, and several studies have investigated their role in the adaptation of plants to harsh environments. Recent studies have shown that the production of hydrophilic substances by glandular trichomes and the deposition of this secretion on young organs may facilitate water retention, thus preventing desiccation and favouring organ growth until the plant develops other protective mechanisms. Lychnophora diamantinana is a species endemic to the Brazilian 'campos rupestres' (rocky fields), a region characterized by intense solar radiation and water deficits. This study sought to investigate trichomes and the origin of the substances observed on the stem apices of L. diamantinana. Samples of stem apices, young and expanded leaves were studied using standard techniques, including light microscopy and scanning and transmission electron microscopy. Histochemical tests were used to identify the major groups of metabolites present in the trichomes and the hyaline material deposited on the apices. Non-glandular trichomes and glandular trichomes were observed. The material deposited on the stem apices was hyaline, highly hydrophilic and viscous. This hyaline material primarily consists of carbohydrates that result from the partial degradation of the cell wall of uniseriate trichomes. This degradation occurs at the same time that glandular trichomes secrete terpenoids, phenolic compounds and proteins. These results suggest that the non-glandular trichomes on the leaves of L. diamantinana help protect the young organ, particularly against desiccation, by deposition of highly hydrated substances on the apices. Furthermore, the secretion of glandular trichomes probably repels herbivore and pathogen attacks.
Resumo:
Seasonal variation in environmental conditions may influence gas exchange rates as well as water relations in perennial species. This work was carried out to evaluate photosynthetic rates (A), transpiration (E), stomatal conductance (g) and leaf water potential (psi f ) in 'Valencia' orange trees grafted on four different rootstocks. Measurements were made twice a day: from 9h00 to 11h00 a.m. and from 1h00 to 3h00 p.m., during January, March and July. A and g were significantly lower and psif was significantly more negative, in the afternoon. The decrease in A may be related to the reduction in g, due to the increase in the vapor pressure deficit between the air and the leaf (VPDair-leaf ) in the afternoon, when temperatures are higher. In spite of the partial stomatal closure in the afternoon, the values for E were approximately the same as those measured in the morning, due to the increase in the VPDair-leaf . A decrease in A and g could also be noted from January to July, that is, from the hot and humid summer months, to the colder and drier winter ones. It was suggested that the decrease in A and g observed from January through March, may be related to the decrease in plant growth rates, which could have influenced the source-sink relationships, since the climatic conditions for both months were similar. The decrease in A and g showed in July, seems to be related to the decrease in both the night temperature and the growth rate of plants.