8 resultados para ordered-disordered

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mesoporous SBA-15 silica with uniform hexagonal pore, narrow pore size distribution and tuneable pore diameter was organofunctionalized with glutaraldehyde-bridged silylating agent. The precursor and its derivative silicas were ibuprofen-loaded for controlled delivery in simulated biological fluids. The synthesized silicas were characterized by elemental analysis, infrared spectroscopy, (13)C and (29)Si solid state NMR spectroscopy, nitrogen adsorption, X-ray diffractometry, thermogravimetry and scanning electron microscopy. Surface functionalization with amine containing bridged hydrophobic structure resulted in significantly decreased surface area from 802.4 to 63.0 m(2) g(-1) and pore diameter 8.0-6.0 nm, which ultimately increased the drug-loading capacity from 18.0% up to 28.3% and a very slow release rate of ibuprofen over the period of 72.5h. The in vitro drug release demonstrated that SBA-15 presented the fastest release from 25% to 27% and SBA-15GA gave near 10% of drug release in all fluids during 72.5 h. The Korsmeyer-Peppas model better fits the release data with the Fickian diffusion mechanism and zero order kinetics for synthesized mesoporous silicas. Both pore sizes and hydrophobicity influenced the rate of the release process, indicating that the chemically modified silica can be suggested to design formulation of slow and constant release over a defined period, to avoid repeated administration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The raft hypothesis proposes that microdomains enriched in sphingolipids, cholesterol, and specific proteins are transiently formed to accomplish important cellular tasks. Equivocally, detergent-resistant membranes were initially assumed to be identical to membrane rafts, because of similarities between their compositions. In fact, the impact of detergents in membrane organization is still controversial. Here, we use phase contrast and fluorescence microscopy to observe giant unilamellar vesicles (GUVs) made of erythrocyte membrane lipids (erythro-GUVs) when exposed to the detergent Triton X-100 (TX-100). We clearly show that TX-100 has a restructuring action on biomembranes. Contact with TX-100 readily induces domain formation on the previously homogeneous membrane of erythro-GUVs at physiological and room temperatures. The shape and dynamics of the formed domains point to liquid-ordered/liquid-disordered (Lo/Ld) phase separation, typically found in raft-like ternary lipid mixtures. The Ld domains are then separated from the original vesicle and completely solubilized by TX-100. The insoluble vesicle left, in the Lo phase, represents around 2/3 of the original vesicle surface at room temperature and decreases to almost 1/2 at physiological temperature. This chain of events could be entirely reproduced with biomimetic GUVs of a simple ternary lipid mixture, 2:1:2 POPC/SM/chol (phosphatidylcholine/sphyngomyelin/cholesterol), showing that this behavior will arise because of fundamental physicochemical properties of simple lipid mixtures. This work provides direct visualization of TX-100-induced domain formation followed by selective (Ld phase) solubilization in a model system with a complex biological lipid composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Very high field (29)Si-NMR measurements using a fully (29)Si-enriched URu(2)Si(2) single crystal were carried out in order to microscopically investigate the hidden order (HO) state and adjacent magnetic phases in the high field limit. At the lowest measured temperature of 0.4 K, a clear anomaly reflecting a Fermi surface instability near 22 T inside the HO state is detected by the (29)Si shift, (29)K(c). Moreover, a strong enhancement of (29)K(c) develops near a critical field H(c) ≃ 35.6 T, and the ^{29}Si-NMR signal disappears suddenly at H(c), indicating the total suppression of the HO state. Nevertheless, a weak and shifted (29)Si-NMR signal reappears for fields higher than H(c) at 4.2 K, providing evidence for a magnetic structure within the magnetic phase caused by the Ising-type anisotropy of the uranium ordered moments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Histological and histochemical observations support the hypothesis that collagen fibers can link to elastic fibers. However, the resulting organization of elastin and collagen type complexes and differences between these materials in terms of macromolecular orientation and frequencies of their chemical vibrational groups have not yet been solved. This study aimed to investigate the macromolecular organization of pure elastin, collagen type I and elastin-collagen complexes using polarized light DIC-microscopy. Additionally, differences and similarities between pure elastin and collagen bundles (CB) were investigated by Fourier transform-infrared (FT-IR) microspectroscopy. Although elastin exhibited a faint birefringence, the elastin-collagen complex aggregates formed in solution exhibited a deep birefringence and formation of an ordered-supramolecular complex typical of collagen chiral structure. The FT-IR study revealed elastin and CB peptide NH groups involved in different types of H-bonding. More energy is absorbed in the vibrational transitions corresponding to CH, CH2 and CH3 groups (probably associated with the hydrophobicity demonstrated by 8-anilino-1-naphtalene sulfonic acid sodium salt [ANS] fluorescence), and to νCN, δNH and ωCH2 groups of elastin compared to CB. It is assumed that the α-helix contribution to the pure elastin amide I profile is 46.8%, whereas that of the B-sheet is 20% and that unordered structures contribute to the remaining percentage. An FT-IR profile library reveals that the elastin signature within the 1360-1189cm(-1) spectral range resembles that of Conex-Toray aramid fibers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Membrane microdomains enriched in cholesterol, sphingolipids (rafts), and specific proteins are involved in important physiological functions. However their structure, size and stability are still controversial. Given that detergent-resistant membranes (DRMs) are in the liquid-ordered state and are rich in raft-like components, they might correspond to rafts at least to some extent. Here we monitor the lateral order of biological membranes by characterizing DRMs from erythrocytes obtained with Brij-98, Brij-58, and TX-100 at 4 °C and 37 °C. All DRMs were enriched in cholesterol and contained the raft markers flotillin-2 and stomatin. However, sphingomyelin (SM) was only found to be enriched in TX-100-DRMs - a detergent that preferentially solubilizes the membrane inner leaflet - while Band 3 was present solely in Brij-DRMs. Electron paramagnetic resonance spectra showed that the acyl chain packing of Brij-DRMs was lower than TX-100-DRMs, providing evidence of their diverse lipid composition. Fatty acid analysis revealed that the SM fraction of the DRMs was enriched in lignoceric acid, which should specifically contribute to the resistance of SM to detergents. These results indicate that lipids from the outer leaflet, particularly SM, are essential for the formation of the liquid-ordered phase of DRMs. At last, the differential solubilization process induced by Brij-98 and TX-100 was monitored using giant unilamellar vesicles. This study suggests that Brij and TX-100-DRMs reflect different degrees of lateral order of the membrane microdomains. Additionally, Brij DRMs are composed by both inner and outer leaflet components, making them more physiologically relevant than TX-100-DRMs to the studies of membrane rafts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We perform variational studies of the interaction-localization problem to describe the interaction-induced renormalizations of the effective (screened) random potential seen by quasiparticles. Here we present results of careful finite-size scaling studies for the conductance of disordered Hubbard chains at half-filling and zero temperature. While our results indicate that quasiparticle wave functions remain exponentially localized even in the presence of moderate to strong repulsive interactions, we show that interactions produce a strong decrease of the characteristic conductance scale g^{*} signaling the crossover to strong localization. This effect, which cannot be captured by a simple renormalization of the disorder strength, instead reflects a peculiar non-Gaussian form of the spatial correlations of the screened disordered potential, a hitherto neglected mechanism to dramatically reduce the impact of Anderson localization (interference) effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A complex iridium oxide β-Li_{2}IrO_{3} crystallizes in a hyperhoneycomb structure, a three-dimensional analogue of honeycomb lattice, and is found to be a spin-orbital Mott insulator with J_{eff}=1/2 moment. Ir ions are connected to the three neighboring Ir ions via Ir-O_{2}-Ir bonding planes, which very likely gives rise to bond-dependent ferromagnetic interactions between the J_{eff}=1/2 moments, an essential ingredient of Kitaev model with a spin liquid ground state. Dominant ferromagnetic interaction between J_{eff}=1/2 moments is indeed confirmed by the temperature dependence of magnetic susceptibility χ(T) which shows a positive Curie-Weiss temperature θ_{CW}∼+40  K. A magnetic ordering with a very small entropy change, likely associated with a noncollinear arrangement of J_{eff}=1/2 moments, is observed at T_{c}=38  K. With the application of magnetic field to the ordered state, a large moment of more than 0.35  μ_{B}/Ir is induced above 3 T, a substantially polarized J_{eff}=1/2 state. We argue that the close proximity to ferromagnetism and the presence of large fluctuations evidence that the ground state of hyperhoneycomb β-Li_{2}IrO_{3} is located in close proximity of a Kitaev spin liquid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Universidade Estadual de Campinas. Faculdade de Educação Física