3 resultados para nutrientes e biomassa
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
A trial was carried out to evaluate the chemical composition in the aerial part of lettuce, cv. 'Elisa', irrigated with wastewater treated with constructed wetland and source deposit water, grown on a Rhodic Hapludox Soil, using the irrigation systems sprinkle, subsurface drip and surface drip irrigation. The experiment was carried out from August 17th to October 3rd of 2001 and the chemical analyses of the lettuce were accomplished to 47 days after transplanting of the seedling. The aerial part of the lettuce was analyzed as for the levels of total nitrogen, nitrate, phosphorus, potassium, calcium, magnesium, sulfur, iron, manganese, copper, zinc, sodium, boron, cobalt and molybdenum. The sodium and the sulfur presented higher levels than the maximum suitable in the aerial part of the lettuce and the smallest level of magnesium, while other chemical elements analyzed were normal and appropriate considering the standard for well-nourished plants, not being influenced by the water type. The sodium was the chemical element that presented the highest levels in the aerial part of the lettuce in the treatments irrigated with wastewater, presenting significant difference in relationship to the treatments irrigated with source deposit water in the three irrigation systems. The use of the different irrigation systems by the application of wastewater treated with constructed wetland did not interfere in the levels of nutrients in the aerial part of the lettuce.
Resumo:
The durability of the cellulose-cement composites is a decisive factor to introduce such material in the market. Polymers have been used in concrete and mortar production to increase its durability. The goal of this work was the physical and mechanical characterization of cellulose-cement composites modified by a polymer and the subsequent durability evaluation. The work also evaluated the dispersion of acrylic polymer in composites made of Pinus caribaea residues. The physical properties observed were water absorption by immersion and bulk density. Rupture modulus and toughness were determined by flexural test. The specimens were obtained from pads, produced by pressing and wet curing. Samples were subjected to accelerated aging tests by repeated wetting and drying cycles and hot-water bath and natural aging. The scanning electron microscopy (SEM) allowed verifying the fiber and composite characteristics along the time. For the composite range analyzed, it was observed the polymer improved the mechanical properties of composites besides a significant decreasing in water absorption. The use of polymer improved the performance of vegetable fiber-cement composites when compared to the conventional mortar, due to water absorption decreasing.
Resumo:
The objective of the work was to evaluate the effects of environment, recipients, and substrate compositions in passion fruit (Passiflora edulis Sims f. flavicarpa Deg.) seedlings biomass production in Pantanal region from September to November of 2006. Experimental trials were conducted in four protected environments, in two types of containers and three different substrate compositions. The environments were: A1 (greenhouse covered with low-density, 150-microns-thick polyethylene film), A2 (monofilament black screened with mesh for 50% of shade), A3 (aluminized screened with mesh for 50% of shade) and A4 (environment covered with straw of native coconut palm); the recipients were: polyethylene bags (R1) (15 x 25 cm) and polystyrene trays (R2) (with 72 cells). There substrates were: S1 (soil + organic compost + vermiculite, 1:1: 1 v/v), S2 (soil + organic compost + sawdust, 1:1: 1 v/v) and S3 (soil + organic compost + vermiculite + sawdust, 1:1: 1/2: 1/2 v/v). The experimental design was completely randomized statistical analysis in split-split-plot, with fifteen replications. The treatments in the plot were environments, in the subplots were pots, and subsubplots were substrates (4 x 2 x 3 = 24 treatments). Fresh and dry mass of aerial and root system parts were evaluated. Environments with screen showed better results for seedlings of yellow passion fruit biomass in polyethylene bags. Polyethylene bags promoted higher biomasses. The substrate with vermiculite showed better results for both types of containers. The substrate with a higher percentage of sawdust showed the worst result.