6 resultados para neural differentiation
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Squamous cell carcinoma is the most common neoplasm of the larynx and glottis, and its prognosis depends on the size of the lesion, level of local invasion, cervical lymphatic spread, and presence of distant metastases. Ki-67 (MKI67) is a protein present in the core, whose function is related to cell proliferation. To evaluate the expression of marker Ki-67 in squamous cell carcinoma of the larynx and glottis and its correlation to pathological findings. Experimental study with immunohistochemistry analysis of Ki-67, calculating the percentage of the cell proliferation index in glottic squamous cell carcinomas. Sixteen cases were analyzed, with six well-differentiated and 10 poorly/moderately differentiated tumors. There was a correlation between cell proliferation index and degree of cell differentiation, with higher proliferation in poorly/moderately differentiated tumors. The cell proliferation index, as measured by Ki-67, may be useful in the characterization of histological degree in glottic squamous cell tumors.
Resumo:
The role of orbital differentiation on the emergence of superconductivity in the Fe-based superconductors remains an open question to the scientific community. In this investigation, we employ a suitable microscopic spin probe technique, namely Electron Spin Resonance (ESR), to investigate this issue on selected chemically substituted BaFe2As2 single crystals. As the spin-density wave (SDW) phase is suppressed, we observe a clear increase of the Fe 3d bands anisotropy along with their localization at the FeAs plane. Such an increase of the planar orbital content is interestingly independent of the chemical substitution responsible for suppressing the SDW phase. As a consequence, the magnetic fluctuations in combination with this particular symmetry of the Fe 3d bands are propitious ingredients for the emergence of superconductivity in this class of materials.
Resumo:
Background: In pathological situations, such as acute myocardial infarction, disorders of motility of the proximal gut can trigger symptoms like nausea and vomiting. Acute myocardial infarction delays gastric emptying (GE) of liquid in rats. Objective: Investigate the involvement of the vagus nerve, α 1-adrenoceptors, central nervous system GABAB receptors and also participation of paraventricular nucleus (PVN) of the hypothalamus in GE and gastric compliance (GC) in infarcted rats. Methods: Wistar rats, N = 8-15 in each group, were divided as INF group and sham (SH) group and subdivided. The infarction was performed through ligation of the left anterior descending coronary artery. GC was estimated with pressure-volume curves. Vagotomy was performed by sectioning the dorsal and ventral branches. To verify the action of GABAB receptors, baclofen was injected via icv (intracerebroventricular). Intravenous prazosin was used to produce chemical sympathectomy. The lesion in the PVN of the hypothalamus was performed using a 1mA/10s electrical current and GE was determined by measuring the percentage of gastric retention (% GR) of a saline meal. Results: No significant differences were observed regarding GC between groups; vagotomy significantly reduced % GR in INF group; icv treatment with baclofen significantly reduced %GR. GABAB receptors were not conclusively involved in delaying GE; intravenous treatment with prazosin significantly reduced GR% in INF group. PVN lesion abolished the effect of myocardial infarction on GE. Conclusion: Gastric emptying of liquids induced through acute myocardial infarction in rats showed the involvement of the vagus nerve, alpha1- adrenergic receptors and PVN.Fundamento: Distúrbios da motilidade do intestino proximal no infarto agudo do miocárdio podem desencadear sintomas digestivos como náuseas e vômitos. O infarto do miocárdio ocasiona retardo do esvaziamento gástrico (EG) de líquido em ratos. Objetivo: Investigar se existe a influência do nervo vago (VGX), adrenoreceptores α-1, receptores GABAB do sistema nervoso central e participação do núcleo paraventricular (NPV) do hipotálamo no esvaziamento gástrico (EG) e complacência gástrica (CG) em ratos infartados. Métodos: Ratos Wistar (n = 8-15) foram divididos em: grupo infarto (INF), sham (SH) e subdivididos. O infarto foi realizado por ligadura da artéria coronária descendente anterior. A complacência gástrica foi estimada com curvas pressão-volume. Realizada vagotomia por secção dos ramos dorsal e ventral. Para verificar a ação dos receptores GABAB foi injetado baclofeno por via intra ventrículo-cerebral. Simpatectomia química foi realizada com prazosina intravenosa (iv), e na lesão do núcleo paraventricular do hipotálamo foi utilizada corrente elétrica de 1mA/10s, com esvaziamento gástrico determinado por medição da retenção gástrica (% RG) de uma refeição salina. Resultados: Não houve diferença significativa na CG. A vagotomia (VGX) reduziu significativamente a %RG; no grupo INF, o tratamento intra ventrículo-cerebral (ivc) com baclofeno reduziu significativamente a % RG; não houve conclusivamente envolvimento dos receptores GABAB em retardar o EG; o tratamento intravenoso com prazosina reduziu significativamente a %RG no grupo INF. A lesão do NPV aboliu o efeito do infarto do miocárdio no EG. Conclusão: O nervo vago, receptores α-adrenérgicos e núcleo paraventricular estão envolvidos no retardo do esvaziamento gástrico no infarto agudo do miocárdio em ratos.
Resumo:
Maternal high-fat diet (HFD) impairs hippocampal development of offspring promoting decreased proliferation of neural progenitors, in neuronal differentiation, in dendritic spine density and synaptic plasticity reducing neurogenic capacity. Notch signaling pathway participates in molecular mechanisms of the neurogenesis. The activation of Notch signaling leads to the upregulation of Hes5, which inhibits the proliferation and differentiation of neural progenitors. This study aimed to investigate the Notch/Hes pathway activation in the hippocampus of the offspring of dams fed an HFD. Female Swiss mice were fed a control diet (CD) and an HFD from pre-mating until suckling. The bodyweight and mass of adipose tissue in the mothers and pups were also measured. The mRNA and protein expression of Notch1, Hes5, Mash1, and Delta1 in the hippocampus was assessed by RT-PCR and western blotting, respectively. Dams fed the HFD and their pups had an increased bodyweight and amount of adipose tissue. Furthermore, the offspring of mothers fed the HFD exhibited an increased Hes5 expression in the hippocampus compared with CD offspring. In addition, HFD offspring also expressed increased amounts of Notch1 and Hes5 mRNA, whereas Mash1 expression was decreased. However, the expression of Delta1 did not change significantly. We propose that the overexpression of Hes5, a Notch effector, downregulates the expression of the proneural gene Mash1 in the offspring of obese mothers, delaying cellular differentiation. These results provide further evidence that an offspring's hippocampus is molecularly susceptible to maternal HFD and suggest that Notch1 signaling in this brain region is important for neuronal differentiation.
Resumo:
Behavioral adaptiveness to different situations as well as behavioral individuality result from the interrelations between environmental sitmuli and the responses of an organism.These kind of interrelationships also shape the neural circuits as well as characterize the plasticity and the neural individuality of the organism. Studies on neural plasticity may analyze changes in neural circuitry after environmental manipulations or changes in behavior after lesions in the nervous system. Issues on neural plasticity and recovery of function refer both to physiology and behavior as well as to the subjacent mechanisms related to morphology, biochemistry and genetics. They may be approached at the systemic, behavioral, cellular and molecular levels. This work intends to characterize these kinds of studies pointing to their relations with the analyis of behavior and learning.The analysis of how the environmental-organismic interrelationships affect the neural substrates of behavior is pointed as a very stimulating area for investigation.
Resumo:
The XX male syndrome - Testicular Disorder of Sexual Differentiation (DSD) is a rare condition characterized by a spectrum of clinical presentations, ranging from ambiguous to normal male genitalia. We report hormonal, molecular and cytogenetic evaluations of a boy presenting with this syndrome. Examination of the genitalia at age of 16 months, showed: penis of 3.5 cm, proximal hypospadia and scrotal testes. Pelvic ultrasound did not demonstrate Mullerian duct structures. Karyotype was 46,XX. Gonadotrophin stimulation test yielded insufficient testosterone production. Gonadal biopsy showed seminiferous tubules without evidence of Leydig cells. Molecular studies revealed that SRY and TSPY genes and also DYZ3 sequences were absent. In addition, the lack of deletions or duplications of SOX9, NR5A1, WNT4 and NROB1 regions was verified. The infant was heterozygous for all microsatellites at the 9p region, including DMRT1 gene, investigated. Only 10% of the patients are SRY-negative and usually they have ambiguous genitalia, as the aforementioned patient. The incomplete masculinization suggests gain of function mutation in one or more genes downstream to SRY gene.