18 resultados para material flow.
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Rapidity-odd directed flow (v1) measurements for charged pions, protons, and antiprotons near midrapidity (y=0) are reported in sNN=7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV Au+Au collisions as recorded by the STAR detector at the Relativistic Heavy Ion Collider. At intermediate impact parameters, the proton and net-proton slope parameter dv1/dy|y=0 shows a minimum between 11.5 and 19.6 GeV. In addition, the net-proton dv1/dy|y=0 changes sign twice between 7.7 and 39 GeV. The proton and net-proton results qualitatively resemble predictions of a hydrodynamic model with a first-order phase transition from hadronic matter to deconfined matter, and differ from hadronic transport calculations.
Resumo:
Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections.
Resumo:
The present paper describes the synthesis of molecularly imprinted polymer - poly(methacrylic acid)/silica and reports its performance feasibility with desired adsorption capacity and selectivity for cholesterol extraction. Two imprinted hybrid materials were synthesized at different methacrylic acid (MAA)/tetraethoxysilane (TEOS) molar ratios (6:1 and 1:5) and characterized by FT-IR, TGA, SEM and textural data. Cholesterol adsorption on hybrid materials took place preferably in apolar solvent medium, especially in chloroform. From the kinetic data, the equilibrium time was reached quickly, being 12 and 20 min for the polymers synthesized at MAA/TEOS molar ratio of 6:1 and 1:5, respectively. The pseudo-second-order model provided the best fit for cholesterol adsorption on polymers, confirming the chemical nature of the adsorption process, while the dual-site Langmuir-Freundlich equation presented the best fit to the experimental data, suggesting the existence of two kinds of adsorption sites on both polymers. The maximum adsorption capacities obtained for the polymers synthesized at MAA/TEOS molar ratios of 6:1 and 1:5 were found to be 214.8 and 166.4 mg g(-1), respectively. The results from isotherm data also indicated higher adsorption capacity for both imprinted polymers regarding to corresponding non-imprinted polymers. Nevertheless, taking into account the retention parameters and selectivity of cholesterol in the presence of structurally analogue compounds (5-α-cholestane and 7-dehydrocholesterol), it was observed that the polymer synthesized at the MAA/TEOS molar ratio of 6:1 was much more selective for cholesterol than the one prepared at the ratio of 1:5, thus suggesting that selective binding sites ascribed to the carboxyl group from MAA play a central role in the imprinting effect created on MIP.
Resumo:
Surgical treatment for enterocutaneous fistulas (EF) frequently fails. Cell therapy may represent a new approach to treatment. Mesenchymal stromal cells (MSCs) have high proliferative and differentiation capacity. This study aimed to investigate whether MSCs could adhere to suture filament (SF), promoting better EF healing. MSCs, 1 × 10(6), from adipose tissue (ATMSCs) were adhered to a Polyvicryl SF by adding a specific fibrin glue formulation. Adhesion was confirmed by confocal and scanning electron microscopy (SEM). A cecal fistula was created in 22 Wistar rats by incising the cecum and suturing the opening to the surgical wound subcutaneously with four separate stitches. The animals were randomly allocated to three groups: control (CG)-five animals, EF performed; injection (IG)-eight animals 1 × 10(6) ATMSCs injected around EF borders; and suture filament (SG): nine animals, sutured with 1 × 10(6) ATMSCs attached to the filaments with fibrin glue. Fistulas were photographed on the operation day and every 3 days until the 21st day and analyzed by two observers using ImageJ Software. Confocal and SEM results demonstrated ATMSCs adhered to SF (ATMSCs-SF). The average reduction size of the fistula area at 21st day was greater for the SG group (90.34%, P < 0.05) than the IG (71.80%) and CG (46.54%) groups. ATMSCs adhered to SF maintain viability and proliferative capacity. EF submitted to ATMSCs-SF procedure showed greater recovery and healing. This approach might be a new and effective tool for EF treatment.
Resumo:
Response surface methodology based on Box-Behnken (BBD) design was successfully applied to the optimization in the operating conditions of the electrochemical oxidation of sanitary landfill leachate aimed for making this method feasible for scale up. Landfill leachate was treated in continuous batch-recirculation system, where a dimensional stable anode (DSA(©)) coated with Ti/TiO2 and RuO2 film oxide were used. The effects of three variables, current density (milliampere per square centimeter), time of treatment (minutes), and supporting electrolyte dosage (moles per liter) upon the total organic carbon removal were evaluated. Optimized conditions were obtained for the highest desirability at 244.11 mA/cm(2), 41.78 min, and 0.07 mol/L of NaCl and 242.84 mA/cm(2), 37.07 min, and 0.07 mol/L of Na2SO4. Under the optimal conditions, 54.99 % of chemical oxygen demand (COD) and 71.07 ammonia nitrogen (NH3-N) removal was achieved with NaCl and 45.50 of COD and 62.13 NH3-N with Na2SO4. A new kinetic model predicted obtained from the relation between BBD and the kinetic model was suggested.
Resumo:
Pathological conditions associated with the impairment of nitric oxide (NO) production in the vasculature, such as Raynaud's syndrome and diabetic angiopathy, have stimulated the development of new biomaterials capable of delivering NO topically. With this purpose, we modified poly(vinyl-alcohol) (PVA) by chemically crosslinking it via esterification with mercaptosuccinic acid. This reaction allowed the casting of sulfhydrylated PVA (PVA-SH) films. Differential scanning calorimetry and X-ray diffractometry showed that the crosslinking reaction completely suppressed the crystallization of PVA, leading to a non-porous film with a homogeneous distribution of -SH groups. The remaining free hydroxyl groups in the PVA-SH network conferred partial hydrophylicity to the material, which was responsible for a swelling degree of ca. 110%. The PVA-SH films were subjected to an S-nitrosation reaction of the -SH groups, yielding a PVA containing S-nitrosothiol groups (PVA-SNO). Amperometric and chemiluminescence measurements showed that the PVA-SNO films were capable of releasing NO spontaneously after immersion in physiological medium. Laser Doppler-flowmetry, used to assess the blood flow in the dermal microcirculation, showed that the topical application of hydrated PVA-SNO films on the health skin led to a dose- and time-dependent increase of more than 5-fold in the dermal baseline blood flow in less than 10min, with a prolonged action of more than 4h during continuous application. These results show that PVA-SNO films might emerge as a new material with potential for the topical treatment of microvascular skin disorders.
Resumo:
Jute fiber is the second most common natural cellulose fiber worldwide, especially in recent years, due to its excellent physical, chemical and structural properties. The objective of this paper was to investigate: the thermal degradation of in natura jute fiber, and the production and characterization of the generated activated carbon. The production consisted of carbonization of the jute fiber and activation with steam. During the activation step the amorphous carbon produced in the initial carbonization step reacted with oxidizing gas, forming new pores and opening closed pores, which enhanced the adsorptive capacity of the activated carbon. N2 gas adsorption at 77K was used in order to evaluate the effect of the carbonization and activation steps. The results of the adsorption indicate the possibility of producing a porous material with a combination of microporous and mesoporous structure, depending on the parameters used in the processes, with resulting specific surface area around 470 m2.g-1. The thermal analysis indicates that above 600°C there is no significant mass loss.
Resumo:
The inflation pressure of the endotracheal tube cuff can cause ischemia of the tracheal mucosa at high pressures; thus, it can cause important tracheal morbidity and tracheal microaspiration of the oropharyngeal secretion, or it can even cause pneumonia associated with mechanical ventilation if the pressure of the cuff is insufficient. In order to investigate the effectiveness of the RUSCH® 7.5 mm endotracheal tube cuff, this study was designed to investigate the physical and mechanical aspects of the cuff in contact with the trachea. For this end, we developed an in vitro experimental model to assess the flow of dye (methylene blue) by the inflated cuff on the wall of the artificial material. We also designed an in vivo study with 12 Large White pigs under endotracheal intubation. We instilled the same dye in the oral cavity of the animals, and we analyzed the presence or not of leakage in the trachea after the region of the cuff after their deaths (animal sacrifice). All cuffs were inflated at the pressure of 30 cmH2O. We observed the passage of fluids through the cuff in all in vitro and in vivo experimental models. We conclude that, as well as several other cuff models in the literature, the RUSCH® 7.5 mm tube cuffs are also not able to completely seal the trachea and thus prevent aspiration of oropharyngeal secretions. Other prevention measures should be taken.
Resumo:
We reported here for the first time that triboelectric charges on PET sheets can be used to seal and control the flow rate in paper-based devices. The proposed method exhibits simplicity and low cost, provides reversible sealing and minimizes the effect of sample evaporation.
Resumo:
The aim of this present study was to investigate on the effects of concurrent training with blood flow restriction (BFR-CT) and concurrent training (CT) on the aerobic fitness, muscle mass and muscle strength in a cohort of older individuals. 25 healthy older adults (64.7±4.1 years; 69.33±10.8 kg; 1.6±0.1 m) were randomly assigned to experimental groups: CT (n=8, endurance training (ET), 2 days/week for 30-40 min, 50-80% VO2peak and RT, 2 days/week, leg press with 4 sets of 10 reps at 70-80% of 1-RM with 60 s rest), BFR-CT (n=10, ET, similar to CT, but resistance training with blood flow restriction: 2 days/week, leg press with 1 set of 30 and 3 sets of 15 reps at 20-30% 1-RM with 60 s rest) or control group (n=7). Quadriceps cross-sectional area (CSAq), 1-RM and VO2peak were assessed pre- and post-examination (12 wk). The CT and BFR-CT showed similar increases in CSAq post-test (7.3%, P<0.001; 7.6%, P<0.0001, respectively), 1-RM (38.1%, P<0.001; 35.4%, P=0.001, respectively) and VO2peak (9.5%, P=0.04; 10.3%, P=0.02, respectively). The BFR-CT promotes similar neuromuscular and cardiorespiratory adaptations as CT.
Resumo:
Nitric oxide (NO)-mediated vasodilation plays a key role in gastric mucosal defense, and NO-donor drugs may protect against diseases associated with gastric mucosal blood flow (GMBF) deficiencies. In this study, we used the ex vivo gastric chamber method and Laser Doppler Flowmetry to characterize the effects of luminal aqueous NO-donor drug S-nitroso-N-acetylcysteine (SNAC) solution administration compared to aqueous NaNO2 and NaNO3 solutions (pH 7.4) on GMBF in Sprague-Dawley rats. SNAC solutions (600 μM and 12 mM) led to a rapid threefold increase in GMBF, which was maintained during the incubation of the solutions with the gastric mucosa, while NaNO2 or NaNO3 solutions (12 mM) did not affect GMBF. SNAC solutions (600 μM and 12 mM) spontaneously released NO at 37 °C at a constant rate of 0.3 or 14 nmol·mL-1·min-1, respectively, while NaNO2 (12 mM) released NO at a rate of 0.06 nmol·mL-1·min-1 and NaNO3 (12 mM) did not release NO. These results suggest that the SNAC-induced GMBF increase is due to their higher rates of spontaneous NO release compared to equimolar NaNO2 solutions. Taken together, our data indicate that oral SNAC administration is a potential approach for gastric acid-peptic disorder prevention and treatment.
Resumo:
A flow injection method for the quantitative analysis of ketoconazole in tablets, based on the reaction with iron (III) ions, is presented. Ketoconazole forms a red complex with iron ions in an acid medium, with maximum absorbance at 495 nm. The detection limit was estimated to be 1×10--4 mol L-1; the quantitation limit is about 3×10--4 mol L-1 and approximately 30 determinations can be performed in an hour. The results were compared with those obtained with a reference HPLC method. Statistical comparisons were done using the Student's t procedure and the F test. Complete agreement was found at the 0.95 significance level between the proposed flow injection and the HPLC procedures. The two methods present similar precision, i.e., for HPLC the mean relative standard deviation was ca. 1.2% and for FIA ca. 1.6%.
Resumo:
In this work the performance of a sugar cane chopped harvester was analysed when fed with two sugar cane mass flows, measuring the invisible losses, which are impossible to measure in the field, harvester sugar cane cleaning efficiency and air velocity on extractors exit. The trial was done under controlled conditions at Copersucar Technology Center in January 2000. The results showed that the flow of sugar cane through the harvester doesn't influence the magnitudes of total invisible losses and raw material cleaning efficiency. The mean air velocity on the primary extractors exit was 12.0 m s-1, and 9.2 m s-1 on the secondary extractor, with a coefficient of variation of 21%, indicating that the poor cleaning performance of the harvester could be related to air velocity difference inside the extractor. Analyzing the data collected in the trials, it was possible to conclude that invisible losses in sugar cane harvester were 10% and the cleaning efficiency was 87%.
Resumo:
We estimate litter production and leaf decomposition rate in a cerradão area, physiognomy little studied and very threatened in São Paulo State. During the period of study, litter production was 5646.9 kg.ha-1.year-1, which the 'leaf' fraction corresponded to 4081.2 kg.ha¹.year¹; the 'branch' fraction, to 1066.1 kg.ha-1.year-1; the 'reproductive structures' fraction, to 434.1 kg.ha-1.year-1; and the 'miscellaneous' fraction to 65.5 kg.ha-1.year-1. Litter production was highly seasonal and negatively correlated with relative humidity and air temperature. Leaf production was negatively correlated with relative humidity, rainfall, and air temperature. There was no significant difference between litter production found in this study and those in two other sites with cerradão and semideciduous forest, but these physiognomies differed significantly from the cerrado sensu stricto. Leaf decomposition rate (K) was 0.56. Half-life of the decomposing material was 1.8 years and turnover time was 2.3 years.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física