20 resultados para lateral hypothalamic area
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Obesity is increasing worldwide and is triggered, at least in part, by enhanced caloric intake. Food intake is regulated by a complex mechanism involving the hypothalamus and hindbrain circuitries. However, evidences have showing that reward systems are also important in regulating feeding behavior. In this context, amygdala is considered a key extra-hypothalamic area regulating feeding behavior in human beings and rodents. This review focuses on the regulation of food intake by amygdala and the mechanisms of insulin resistance in this brain area. Similar to the hypothalamus the anorexigenic effect of insulin is mediated via PI3K (phosphoinositide 3-kinase)/Akt (protein kinase B) pathway in the amygdala. Insulin decreases NPY (neuropeptide Y) and increases oxytocin mRNA levels in the amygdala. High fat diet and saturated fatty acids induce inflammation, ER (endoplasmic reticulum) stress and the activation of serine kinases such as PKCθ (protein kinase C theta), JNK (c-Jun N-terminal kinase) and IKKβ (inhibitor of nuclear factor kappa-B kinase beta) in the amygdala, which have an important role in insulin resistance in this brain region. Overexpressed PKCθ in the CeA (central nucleus of amygdala) of rats increases weight gain, food intake, insulin resistance and hepatic triglycerides content. The inhibition of ER stress ameliorates insulin action/signaling, increases oxytocin and decreases NPY gene expression in the amygdala of high fat feeding rodents. Those data suggest that PKCθ and ER stress are main mechanisms of insulin resistance in the amygdala of obese rats and play an important role regulating feeding behavior.
Resumo:
Our objective was to investigate spinal cord (SC) atrophy in amyotrophic lateral sclerosis (ALS) patients, and to determine whether it correlates with clinical parameters. Forty-three patients with ALS (25 males) and 43 age- and gender-matched healthy controls underwent MRI on a 3T scanner. We used T1-weighted 3D images covering the whole brain and the cervical SC to estimate cervical SC area and eccentricity at C2/C3 level using validated software (SpineSeg). Disease severity was quantified with the ALSFRS-R and ALS Severity scores. SC areas of patients and controls were compared with a Mann-Whitney test. We used linear regression to investigate association between SC area and clinical parameters. Results showed that mean age of patients and disease duration were 53.1 ± 12.2 years and 34.0 ± 29.8 months, respectively. The two groups were significantly different regarding SC areas (67.8 ± 6.8 mm² vs. 59.5 ± 8.4 mm², p < 0.001). Eccentricity values were similar in both groups (p = 0.394). SC areas correlated with disease duration (r = - 0.585, p < 0.001), ALSFRS-R score (r = 0.309, p = 0.044) and ALS Severity scale (r = 0.347, p = 0.022). In conclusion, patients with ALS have SC atrophy, but no flattening. In addition, SC areas correlated with disease duration and functional status. These data suggest that quantitative MRI of the SC may be a useful biomarker in the disease.
Resumo:
Intermittent fasting (IF) is an often-used intervention to decrease body mass. In male Sprague-Dawley rats, 24 hour cycles of IF result in light caloric restriction, reduced body mass gain, and significant decreases in the efficiency of energy conversion. Here, we study the metabolic effects of IF in order to uncover mechanisms involved in this lower energy conversion efficiency. After 3 weeks, IF animals displayed overeating during fed periods and lower body mass, accompanied by alterations in energy-related tissue mass. The lower efficiency of energy use was not due to uncoupling of muscle mitochondria. Enhanced lipid oxidation was observed during fasting days, whereas fed days were accompanied by higher metabolic rates. Furthermore, an increased expression of orexigenic neurotransmitters AGRP and NPY in the hypothalamus of IF animals was found, even on feeding days, which could explain the overeating pattern. Together, these effects provide a mechanistic explanation for the lower efficiency of energy conversion observed. Overall, we find that IF promotes changes in hypothalamic function that explain differences in body mass and caloric intake.
Resumo:
Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.
Resumo:
Hypothalamic inflammation is a common feature of experimental obesity. Dietary fats are important triggers of this process, inducing the activation of toll-like receptor-4 (TLR4) signaling and endoplasmic reticulum stress. Microglia cells, which are the cellular components of the innate immune system in the brain, are expected to play a role in the early activation of diet-induced hypothalamic inflammation. Here, we use bone marrow transplants to generate mice chimeras that express a functional TLR4 in the entire body except in bone marrow-derived cells or only in bone marrow-derived cells. We show that a functional TLR4 in bone marrow-derived cells is required for the complete expression of the diet-induced obese phenotype and for the perpetuation of inflammation in the hypothalamus. In an obesity-prone mouse strain, the chemokine CX3CL1 (fractalkine) is rapidly induced in the neurons of the hypothalamus after the introduction of a high-fat diet. The inhibition of hypothalamic fractalkine reduces diet-induced hypothalamic inflammation and the recruitment of bone marrow-derived monocytic cells to the hypothalamus; in addition, this inhibition reduces obesity and protects against diet-induced glucose intolerance. Thus, fractalkine is an important player in the early induction of diet-induced hypothalamic inflammation, and its inhibition impairs the induction of the obese and glucose intolerance phenotypes.
Resumo:
The control of energy homeostasis relies on robust neuronal circuits that regulate food intake and energy expenditure. Although the physiology of these circuits is well understood, the molecular and cellular response of this program to chronic diseases is still largely unclear. Hypothalamic inflammation has emerged as a major driver of energy homeostasis dysfunction in both obesity and anorexia. Importantly, this inflammation disrupts the action of metabolic signals promoting anabolism or supporting catabolism. In this review, we address the evidence that favors hypothalamic inflammation as a factor that resets energy homeostasis in pathological states.
Resumo:
Although malaria in Brazil almost exclusively occurs within the boundaries of the Amazon Region, some concerns are raised regarding imported malaria to non-endemic areas of the country, notably increased incidence of complications due to delayed diagnoses. However, although imported malaria in Brazil represents a major health problem, only a few studies have addressed this subject. A retrospective case series is presented in which 263 medical charts were analysed to investigate the clinical and epidemiological characterization of malaria cases that were diagnosed and treated at Hospital & Clinics, State University of Campinas between 1998 and 2011. Amongst all medical charts analysed, 224 patients had a parasitological confirmed diagnosis of malaria. Plasmodium vivax and Plasmodium falciparum were responsible for 67% and 30% of the infections, respectively. The majority of patients were male (83%) of a productive age (median, 37 years old). Importantly, severe complications did not differ significantly between P. vivax (14 cases, 9%) and P. falciparum (7 cases, 10%) infections. Severe malaria cases were frequent among imported cases in Brazil outside of the Amazon area. The findings reinforce the idea that P. vivax infections in Brazil are not benign, regardless the endemicity of the area studied. Moreover, as the hospital is located in a privileged site, it could be used for future studies of malaria relapses and primaquine resistance mechanisms. Finally, based on the volume of cases treated and the secondary complications, referral malaria services are needed in the non-endemic areas of Brazil for a rapid and efficient and treatment.
Resumo:
Sphingosine 1-phosphate receptor 1 (S1PR1) is a G-protein-coupled receptor for sphingosine-1-phosphate (S1P) that has a role in many physiological and pathophysiological processes. Here we show that the S1P/S1PR1 signalling pathway in hypothalamic neurons regulates energy homeostasis in rodents. We demonstrate that S1PR1 protein is highly enriched in hypothalamic POMC neurons of rats. Intracerebroventricular injections of the bioactive lipid, S1P, reduce food consumption and increase rat energy expenditure through persistent activation of STAT3 and the melanocortin system. Similarly, the selective disruption of hypothalamic S1PR1 increases food intake and reduces the respiratory exchange ratio. We further show that STAT3 controls S1PR1 expression in neurons via a positive feedback mechanism. Interestingly, several models of obesity and cancer anorexia display an imbalance of hypothalamic S1P/S1PR1/STAT3 axis, whereas pharmacological intervention ameliorates these phenotypes. Taken together, our data demonstrate that the neuronal S1P/S1PR1/STAT3 signalling axis plays a critical role in the control of energy homeostasis in rats.
Resumo:
This study proposed to evaluate the mandibular biomechanics in the posterior dentition based on experimental and computational analyses. The analyses were performed on a model of human mandible, which was modeled by epoxy resin for photoelastic analysis and by computer-aided design for finite element analysis. To standardize the evaluation, specific areas were determined at the lateral surface of mandibular body. The photoelastic analysis was configured through a vertical load on the first upper molar and fixed support at the ramus of mandible. The same configuration was used in the computer simulation. Force magnitudes of 50, 100, 150, and 200 N were applied to evaluate the bone stress. The stress results presented similar distribution in both analyses, with the more intense stress being at retromolar area and oblique line and alveolar process at molar level. This study presented the similarity of results in the experimental and computational analyses and, thus, showed the high importance of morphology biomechanical characterization at posterior dentition.
Resumo:
Measurement instruments are an integral part of clinical practice, health evaluation and research. These instruments are only useful and able to present scientifically robust results when they are developed properly and have appropriate psychometric properties. Despite the significant increase of rating scales, the literature suggests that many of them have not been adequately developed and validated. The scope of this study was to conduct a narrative review on the process of developing new measurement instruments and to present some tools which can be used in some stages of the development process. The steps described were: I-The establishment of a conceptual framework, and the definition of the objectives of the instrument and the population involved; II-Development of the items and of the response scales; III-Selection and organization of the items and structuring of the instrument; IV-Content validity, V-Pre-test. This study also included a brief discussion on the evaluation of the psychometric properties due to their importance for the instruments to be accepted and acknowledged in both scientific and clinical environments.
Resumo:
Lateral pterygoid muscle (LPM) plays an important role in jaw movement and has been implicated in Temporomandibular disorders (TMDs). Migraine has been described as a common symptom in patients with TMDs and may be related to muscle hyperactivity. This study aimed to compare LPM volume in individuals with and without migraine, using segmentation of the LPM in magnetic resonance (MR) imaging of the TMJ. Twenty patients with migraine and 20 volunteers without migraine underwent a clinical examination of the TMJ, according to the Research Diagnostic Criteria for TMDs. MR imaging was performed and the LPM was segmented using the ITK-SNAP 1.4.1 software, which calculates the volume of each segmented structure in voxels per cubic millimeter. The chi-squared test and the Fisher's exact test were used to relate the TMD variables obtained from the MR images and clinical examinations to the presence of migraine. Logistic binary regression was used to determine the importance of each factor for predicting the presence of a migraine headache. Patients with TMDs and migraine tended to have hypertrophy of the LPM (58.7%). In addition, abnormal mandibular movements (61.2%) and disc displacement (70.0%) were found to be the most common signs in patients with TMDs and migraine. In patients with TMDs and simultaneous migraine, the LPM tends to be hypertrophic. LPM segmentation on MR imaging may be an alternative method to study this muscle in such patients because the hypertrophic LPM is not always palpable.
Resumo:
Air quality in animal production environment has been refereed as an interesting point for studies in environmental control systems with the focus both to the animal health which live in total confinement, as to the workers. The objective of this research was to determine the variation on the aerial environmental quality in two types of broiler housing: conventional (Gc) and tunnel type (Gt). The total dust values in both houses offered adequate rearing conditions to the birds; however, regarding the inhale dust in the air was above the limits recommended for humans. Carbon monoxide concentration in the heating phase during the evaluated period was above the 10 ppm maximum recommended, and it was higher during the cold season in Gt house (30 ppm) when compared to the Gc house (18 ppm). Ammonia concentration peaks in the air were above the 20 ppm recommended from the 20th day of production in both houses and in daily average, for a period higher in Gt (4h30) when compared to Gt (2h45). Only traces of nitrate oxide and methane were found while carbonic dioxide gas concentration evaluated during daytime met the limits allowed for both birds and labor.
Resumo:
The swine breeder rearing environment directly affects the animal's performance. This research had the objective of developing a thermal, aerial and acoustic environmental evaluation pattern for boar housing. The experiment was carried on a commercial swine farm in Salto County -SP, Brazil. Thermal, aerial and acoustic environment data of rearing conditions were registered. Data were statistically analyzed using as threshold the ideal housing environment that leads to animal welfare. Results showed that ambient temperature was around 70% beyond normal range, while air relative humidity, air speed and gases concentration were within threshold values. Noise level data besides being within normal range did not present large variation. In relation to the fuzzy logic analysis it was possible to build up a scenario which indicated that the best welfare indexes to male swine breeders happens when thermal comfort index are close to 80%, and noise level is lower than 40 dB. In the other hand the worst welfare index occur in the sector where the thermal comfort values are below 40% at the same time that the noise level is higher than 80 dB leading to inadequate conditions to the animal, and may directly interfere in the reproduction system performance.
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física