13 resultados para inherited nephropathy
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Mesangial cells subject to high extracellular glucose concentrations, as occur in hyperglycaemic states, are unable to down regulate glucose influx, resulting in intracellular activation of deleterious biochemical pathways. A high expression of GLUT1 participates in the development of diabetic glomerulopathy. Variants in the gene encoding GLUT1 (SLC2A1) have been associated to this diabetic complication. The aim of this study was to test whether polymorphisms in SLC2A1 confer susceptibility to diabetic nephropathy (DN) in Brazilian type 1 diabetes patients. Four polymorphisms (rs3820589, rs1385129, rs841847 and rs841848) were genotyped in a Brazilian cohort comprised of 452 patients. A prospective analysis was performed in 155 patients. Mean duration of follow-up was 5.6±2.4years and the incidence of renal events was 18.0%. The rs3820589 presented an inverse association with the prevalence of incipient DN (OR: 0.36, 95% CI: 0.16 - 0.80, p=0.01) and with progression to renal events (HR: 0.20; 95% CI: 0.03 - 0.70; p=0.009). AGGT and AGAC haplotypes were associated with the prevalence of incipient DN and the AGAC haplotype was also associated with the prevalence of established/advanced DN. In conclusion, rs3820589 in the SLC2A1 gene modulates the risk to DN in Brazilian patients with inadequate type 1 diabetes control.
Resumo:
The reproductive capacity between Triatoma lenti and Triatoma sherlocki was observed in order to verify the fertility and viability of the offspring. Cytogenetic, morphological and morphometric approaches were used to analyze the differences that were inherited. Experimental crosses were performed in both directions. The fertility rate of the eggs in crosses involving T. sherlocki females was 65% and 90% in F1 and F2 offspring, respectively. In reciprocal crosses, it was 7% and 25% in F1 and F2 offspring, respectively. The cytogenetic analyses of the male meiotic process of the hybrids were performed using lacto-acetic orcein, C-banding and Feulgen techniques. The male F1 offspring presented normal chromosome behavior, a finding that was similar to those reported in parental species. However, cytogenetic analysis of F2 offspring showed errors in chromosome pairing. This post-zygotic isolation, which prevents hybrids in nature, may represent the collapse of the hybrid. This phenomenon is due to a genetic dysregulation that occurs in the chromosomes of F1. The results were similar in the hybrids from both crosses. Morphological features, such as color and size of connexive and the presence of red-orange rings on the femora, were similar to T. sherlocki, while wins size was similar to T. lenti in F1 offspring. The eggshells showed characteristics that were similar to species of origin, whereas the median process of the pygophore resulted in intermediate characteristics in the F1 and a segregating pattern in F2 offspring. Geometric morphometric techniques used on the wings showed that both F1 and F2 offspring were similar to T. lenti. These studies on the reproductive capacity between T. lenti and T. sherlocki confirm that both species are evolutionarily closed; hence, they are included in the brasiliensis subcomplex. The extremely reduced fertility observed in the F2 hybrids confirmed the specific status of the species that were analyzed.
Resumo:
The role of key cell cycle regulation genes such as, CDKN1B, CDKN2A, CDKN2B, and CDKN2C in sporadic medullary thyroid carcinoma (s-MTC) is still largely unknown. In order to evaluate the influence of inherited polymorphisms of these genes on the pathogenesis of s-MTC, we used TaqMan SNP genotyping to examine 45 s-MTC patients carefully matched with 98 controls. A multivariate logistic regression analysis demonstrated that CDKN1B and CDKN2A genes were related to s-MTC susceptibility. The rs2066827*GT+GG CDKN1B genotype was more frequent in s-MTC patients (62.22%) than in controls (40.21%), increasing the susceptibility to s-MTC (OR=2.47; 95% CI=1.048-5.833; P=0.038). By contrast, the rs11515*CG+GG of CDKN2A gene was more frequent in the controls (32.65%) than in patients (15.56%), reducing the risk for s-MTC (OR=0.174; 95% CI=0.048-0.627; P=0.0075). A stepwise regression analysis indicated that two genotypes together could explain 11% of the total s-MTC risk. In addition, a relationship was found between disease progression and the presence of alterations in the CDKN1A (rs1801270), CDKN2C (rs12885), and CDKN2B (rs1063192) genes. WT rs1801270 CDKN1A patients presented extrathyroidal tumor extension more frequently (92%) than polymorphic CDKN1A rs1801270 patients (50%; P=0.0376). Patients with the WT CDKN2C gene (rs12885) presented larger tumors (2.9±1.8 cm) than polymorphic patients (1.5±0.7 cm; P=0.0324). On the other hand, patients with the polymorphic CDKN2B gene (rs1063192) presented distant metastases (36.3%; P=0.0261). In summary, we demonstrated that CDKN1B and CDKN2A genes are associated with susceptibility, whereas the inherited genetic profile of CDKN1A, CDKN2B, and CDKN2C is associated with aggressive features of tumors. This study suggests that profiling cell cycle genes may help define the risk and characterize s-MTC aggressiveness.
Resumo:
In diabetes mellitus (DM), podocyte apoptosis leads to albuminuria and nephropathy progression. Low-density lipoprotein receptor-related protein 6 (LRP6) is WNT pathway receptor that is involved in podocyte death, adhesion and motility. Glycogen synthase kinase 3 (GSK3) interaction with p53 (GSK3-p53) promotes apoptosis in carcinoma cells. It is unknown if GSK3-p53 contributes to podocyte apoptosis in DM. In experimental DM, green tea (GT) reduces albuminuria by an unknown mechanism. In the present study, we assessed the role of the GSK3β-p53 in podocyte apoptosis and the effects of GT on these abnormalities. In diabetic spontaneously hypertensive rats (SHRs), GT prevents podocyte's p-LRP6 expression reduction, increased GSK3β-p53 and high p53 levels. In diabetic SHR rats, GT reduces podocyte apoptosis, foot process effacement and albuminuria. In immortalized mouse podocytes (iMPs), high glucose (HG), silencing RNA (siRNA) or blocking LRP6 (DKK-1) reduced p-LRP6 expression, leading to high GSK3β-p53, p53 expression, apoptosis and increased albumin influx. GSK3β blockade by BIO reduced GSK3β-p53 and podocyte apoptosis. In iMPs under HG, GT reduced apoptosis and the albumin influx by blocking GSK3β-p53 following the rise in p-LRP6 expression. These effects of GT were prevented by LRP6 siRNA or DKK-1. In conclusion, in DM, WNT inhibition, via LRP6, increases GSK3β-p53 and podocyte apoptosis. Maneuvers that inactivate GSK3β-p53, such as GT, may be renoprotective in DM.
Resumo:
The syndrome of resistance to thyroid hormone (RTH β) is an inherited disorder characterized by variable tissue hyposensitivity to 3,5,30-l-triiodothyronine (T3), with persistent elevation of free-circulating T3 (FT3) and free thyroxine (FT4) levels in association with nonsuppressed serum thyrotropin (TSH). Clinical presentation is variable and the molecular analysis of THRB gene provides a short cut diagnosis. Here, we describe 2 cases in which RTH β was suspected on the basis of laboratory findings. The diagnosis was confirmed by direct THRB sequencing that revealed 2 novel mutations: the heterozygous p.Ala317Ser in subject 1 and the heterozygous p.Arg438Pro in subject 2. Both mutations were shown to be deleterious by SIFT, PolyPhen, and Align GV-GD predictive methods.
Resumo:
The 22q11 chromosomal region contains low copy repeats (LCRs) sequences that mediate non-allelic homologous recombination, which predisposes to copy number variations (CNVs) at this locus. Hemizygous deletions of the proximal 22q11.2 region result in the 22q11.2 deletion syndrome (22q11.2 DS). In addition, 22q11.2 duplications involving the distal LCR22s have been reported. This article describes a patient presenting a 2.5-Mb de novo deletion at proximal 22q11.21 region (between LCRs A-D), combined with a 1.3-Mb maternally inherited duplication at distal 22q11.23 region (between LCRs F-H). The presence of concomitant chromosomal imbalances found in this patient has not been reported previously. Clinical and molecular data were compared with literature, in order to contribute to genotype-phenotype correlation. These findings exemplify the complexity and genetic heterogeneity observed in 22q11.2 deletion syndrome and highlights the difficulty to make genetic counseling and predict phenotypic consequences in these situations.
Resumo:
Reduction in sirtuin 1 (Sirt-1) is associated with extracellular matrix (ECM) accumulation in the diabetic kidney. Theobromine may reduce kidney ECM accumulation in diabetic rats. In the current study, we aimed to unravel, under diabetic conditions, the mechanism of kidney ECM accumulation induced by a reduction in Sirt-1 and the effect of theobromine in these events. In vitro, we used immortalized human mesangial cells (iHMCs) exposed to high glucose (HG; 30 mM), with or without small interfering RNA for NOX4 and Sirt-1. In vivo, spontaneously hypertensive rats (SHR) were rendered diabetic by means of streptozotocin and studied after 12 wk. The effects of treatment with theobromine were investigated under both conditions. HG leads to a decrease in Sirt-1 activity and NAD(+) levels in iHMCs. Sirt-1 activity could be reestablished by treatment with NAD(+), silencing NOX4, and poly (ADP-ribose) polymerase-1 (PARP-1) blockade, or with theobromine. HG also leads to a low AMP/ATP ratio, acetylation of SMAD3, and increased collagen IV, which is prevented by theobromine. Sirt-1 or AMPK blockade abolished these effects of theobromine. In diabetic SHR, theobromine prevented increases in albuminuria and kidney collagen IV, reduced AMPK, elevated NADPH oxidase activity and PARP-1, and reduced NAD(+) levels and Sirt-1 activity. These results suggest that in diabetes mellitus, Sirt-1 activity is reduced by PARP-1 activation and NAD(+) depletion due to low AMPK, which increases NOX4 expression, leading to ECM accumulation mediated by transforming growth factor (TGF)-β1 signaling. It is suggested that Sirt-1 activation by theobromine may have therapeutic potential for diabetic nephropathy.
Resumo:
Spinocerebellar ataxia type 1 (SCA1), spinocerebellar ataxia type 2 (SCA2) and Machado-Joseph disease or spinocerebellar ataxia type 3 (MJD/SCA3) are three distinctive forms of autosomal dominant spinocerebellar ataxia (SCA) caused by expansions of an unstable CAG repeat localized in the coding region of the causative genes. Another related disease, dentatorubropallidoluysian atrophy (DRPLA) is also caused by an unstable triplet repeat and can present as SCA in late onset patients. We investigated the frequency of the SCA1, SCA2, MJD/SCA3 and DRPLA mutations in 328 Brazilian patients with SCA, belonging to 90 unrelated families with various patterns of inheritance and originating in different geographic regions of Brazil. We found mutations in 35 families (39%), 32 of them with a clear autosomal dominant inheritance. The frequency of the SCA1 mutation was 3% of all patients; and 6 % in the dominantly inherited SCAs. We identified the SCA2 mutation in 6% of all families and in 9% of the families with autosomal dominant inheritance. The MJD/SCA3 mutation was detected in 30 % of all patients; and in the 44% of the dominantly inherited cases. We found no DRPLA mutation. In addition, we observed variability in the frequency of the different mutations according to geographic origin of the patients, which is probably related to the distinct colonization of different parts of Brazil. These results suggest that SCA may be occasionally caused by the SCA1 and SCA2 mutations in the Brazilian population, and that the MJD/SCA3 mutation is the most common cause of dominantly inherited SCA in Brazil.
Resumo:
X-linked adrenoleukodystrophy (X-ALD) is an inherited disease with clinical heterogeneity varying from presymptomatic individuals to rapidly progressive cerebral ALD forms. This disease is characterized by increased concentration of very long chain fatty acids (VLCFAs) in plasma and in adrenal, testicular and nervous tissues. Affected individuals can be classified in different clinical settings, according to phenotypic expression and age at onset of initial symptoms. Molecular defects in X-ALD individuals usually result from ABCD1 gene mutations. In the present report we describe clinical data and the ABCD1 gene study in two boys affected with the childhood cerebral form that presented with different symptomatic manifestations at diagnosis. In addition, their maternal grandfather had been diagnosed with Addison's disease indicating phenotypic variation for X-ALD within this family. The mutation p.Trp132Ter was identified in both male patients; additionally, three females, out of eleven family members, were found to be heterozygous after screening for this mutation. In the present report, the molecular analysis was especially important since one of the heterozygous females was in first stages of pregnancy. Therefore, depending on the fetus outcome, if male and p.Trp132Ter carrier, storage of the umbilical cord blood should be recommended as hematopoietic stem cell transplantation could be considered as an option for treatment in the future.
Resumo:
Deficiency of the enzyme P450 oxidoreductase is a rare form of congenital adrenal hyperplasia with characteristics of combined and partial impairments in steroidogenic enzyme activities, as P450 oxidoreductase transfers electrons to CYP21A2, CYP17A1, and CYP19A1. It results in disorders of sex development and skeletal malformations similar to Antley-Bixley syndrome. We report the case of a 9-year-old girl who was born with virilized genitalia (Prader stage V), absence of palpable gonads, 46,XX karyotype, and hypergonadotropic hypogonadism. During the first year of life, ovarian cyst, partial adrenal insufficiency, and osteoarticular changes, such as mild craniosynostosis, carpal and tarsal synostosis, and limited forearm pronosupination were observed. Her mother presented severe virilization during pregnancy. The molecular analysis of P450 oxidoreductase gene revealed compound heterozygosis for the nonsense p.Arg223*, and the novel missense p.Met408Lys, inherited from the father and the mother, respectively. Arq Bras Endocrinol Metab. 2012;56(8):578-85
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física