114 resultados para genotyping and RFLP
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Polymorphisms of Rh, Kell, Duffy, Kidd and Diego blood group systems were studied in 209 unrelated Brazilian Japanese descendants from South of Brazil. The methods used were multiplex-PCR, AS-PCR and RFLP-PCR. The differences in frequencies among the populations were evaluated using chi-square test. The frequencies for Rh, Kell, Kidd and Diego system were similar to those of the Japanese. RHCE(*)CC, RHCE(*)EE genotypes and FY(*)01 allele were lower and FY(*)01N.01 was higher than Japanese. These differences in the frequencies between Brazilian Japanese descendants and Japanese could indicate a gene flow in Brazilian population and reinforce the importance of this knowledge to achieve safe red blood cells.
Polymorphism In Lep And Lepr May Modify Leptin Levels And Represent Risk Factors For Thyroid Cancer.
Resumo:
Purpose. To understand the role of polymorphisms in the LEP (rs7799039 and rs2167270) and LEPR (rs1137101 and rs1137100) genes in DTC susceptibility and their effect on leptin levels. Methods. We studied 153 patients with DTC and 234 controls through TaqMan SNP Genotyping and ELISA, comparing these data to the clinicopathological data of patients with DTC. Results. Patients with AA genotype of rs7799039 had higher levels of serum leptin (9.22 ± 0.98 ng/mL) than those with AG genotype (10.07 ± 0.60 ng/mL; P = 0.005). Individuals with AG genotype of rs2167270 also produced higher serum leptin levels (10.05 ± 0.59 ng/mL) than the subjects with GG genotype (9.52 ± 0.79 ng/mL; P < 0.05). A multivariate logistic regression adjusted for gender, age, and BMI showed that the AG genotype of rs7799039 was an independent risk for DTC (OR, 11.689; P = 0.0183; 95% CI, 1.516-90.119). Similarly, AG and GG genotypes of rs1137101 increased the susceptibility to DTC (OR, 3.747; P = 0.027; 95% CI, 1.161-12.092 and OR, 5.437; P = 0.013; 95% CI, 1.426-20.729). Conclusions. We demonstrated that rs7799039 and rs2167270 polymorphisms modify the serum leptin concentrations in patients with DTC. Furthermore, polymorphisms rs7799039 and rs1137101 increase the risk of DTC development, although they do not correlate with tumor aggressiveness.
Resumo:
Giardia duodenalis is a flagellate protozoan that parasitizes humans and several other mammals. Protozoan contamination has been regularly documented at important environmental sites, although most of these studies were performed at the species level. There is a lack of studies that correlate environmental contamination and clinical infections in the same region. The aim of this study is to evaluate the genetic diversity of a set of clinical and environmental samples and to use the obtained data to characterize the genetic profile of the distribution of G. duodenalis and the potential for zoonotic transmission in a metropolitan region of Brazil. The genetic assemblages and subtypes of G. duodenalis isolates obtained from hospitals, a veterinary clinic, a day-care center and important environmental sites were determined via multilocus sequence-based genotyping using three unlinked gene loci. Cysts of Giardia were detected at all of the environmental sites. Mixed assemblages were detected in 25% of the total samples, and an elevated number of haplotypes was identified. The main haplotypes were shared among the groups, and new subtypes were identified at all loci. Ten multilocus genotypes were identified: 7 for assemblage A and 3 for assemblage B. There is persistent G. duodenalis contamination at important environmental sites in the city. The identified mixed assemblages likely represent mixed infections, suggesting high endemicity of Giardia in these hosts. Most Giardia isolates obtained in this study displayed zoonotic potential. The high degree of genetic diversity in the isolates obtained from both clinical and environmental samples suggests that multiple sources of infection are likely responsible for the detected contamination events. The finding that many multilocus genotypes (MLGs) and haplotypes are shared by different groups suggests that these sources of infection may be related and indicates that there is a notable risk of human infection caused by Giardia in this region.
Resumo:
To evaluate associations between polymorphisms of the N-acetyltransferase 2 (NAT2), human 8-oxoguanine glycosylase 1 (hOGG1) and X-ray repair cross-complementing protein 1 (XRCC1) genes and risk of upper aerodigestive tract (UADT) cancer. A case-control study involving 117 cases and 224 controls was undertaken. The NAT2 gene polymorphisms were genotyped by automated sequencing and XRCC1 Arg399Gln and hOGG1 Ser326Cys polymorphisms were determined by Polymerase Chain Reaction followed by Restriction Fragment Length Polymorphism (PCR-RFLP) methods. Slow metabolization phenotype was significantly associated as a risk factor for the development of UADT cancer (p=0.038). Furthermore, haplotype of slow metabolization was also associated with UADT cancer (p=0.014). The hOGG1 Ser326Cys polymorphism (CG or GG vs. CC genotypes) was shown as a protective factor against UADT cancer in moderate smokers (p=0.031). The XRCC1 Arg399Gln polymorphism (GA or AA vs. GG genotypes), in turn, was a protective factor against UADT cancer only among never-drinkers (p=0.048). Interactions involving NAT2, XRCC1 Arg399Gln and hOGG1 Ser326Cys polymorphisms may modulate the risk of UADT cancer in this population.
Resumo:
Prosopis rubriflora and Prosopis ruscifolia are important species in the Chaquenian regions of Brazil. Because of the restriction and frequency of their physiognomy, they are excellent models for conservation genetics studies. The use of microsatellite markers (Simple Sequence Repeats, SSRs) has become increasingly important in recent years and has proven to be a powerful tool for both ecological and molecular studies. In this study, we present the development and characterization of 10 new markers for P. rubriflora and 13 new markers for P. ruscifolia. The genotyping was performed using 40 P. rubriflora samples and 48 P. ruscifolia samples from the Chaquenian remnants in Brazil. The polymorphism information content (PIC) of the P. rubriflora markers ranged from 0.073 to 0.791, and no null alleles or deviation from Hardy-Weinberg equilibrium (HW) were detected. The PIC values for the P. ruscifolia markers ranged from 0.289 to 0.883, but a departure from HW and null alleles were detected for certain loci; however, this departure may have resulted from anthropic activities, such as the presence of livestock, which is very common in the remnant areas. In this study, we describe novel SSR polymorphic markers that may be helpful in future genetic studies of P. rubriflora and P. ruscifolia.
Resumo:
Intronic thyroid-stimulating hormone receptor polymorphisms have been associated with the risk for both Graves' disease and Graves' ophthalmopathy, but results have been inconsistent among different populations. We aimed to investigate the influence of thyroid-stimulating hormone receptor intronic polymorphisms in a large well-characterized population of GD patients. We studied 279 Graves' disease patients (231 females and 48 males, 39.80 ± 11.69 years old), including 144 with Graves' ophthalmopathy, matched to 296 healthy control individuals. Thyroid-stimulating hormone receptor genotypes of rs179247 and rs12885526 were determined by Real Time PCR TaqMan(®) SNP Genotyping. A multivariate analysis showed that the inheritance of the thyroid-stimulating hormone receptor AA genotype for rs179247 increased the risk for Graves' disease (OR = 2.821; 95 % CI 1.595-4.990; p = 0.0004), whereas the thyroid-stimulating hormone receptor GG genotype for rs12885526 increased the risk for Graves' ophthalmopathy (OR = 2.940; 95 % CI 1.320-6.548; p = 0.0083). Individuals with Graves' ophthalmopathy also presented lower mean thyrotropin receptor antibodies levels (96.3 ± 143.9 U/L) than individuals without Graves' ophthalmopathy (98.3 ± 201.9 U/L). We did not find any association between the investigated polymorphisms and patients clinical features or outcome. We demonstrate that thyroid-stimulating hormone receptor intronic polymorphisms are associated with the susceptibility to Graves' disease and Graves' ophthalmopathy in the Brazilian population, but do not appear to influence the disease course.
Resumo:
Characterized for the first time in erythrocytes, phosphatidylinositol phosphate kinases (PIP kinases) belong to a family of enzymes that generate various lipid messengers and participate in several cellular processes, including gene expression regulation. Recently, the PIPKIIα gene was found to be differentially expressed in reticulocytes from two siblings with hemoglobin H disease, suggesting a possible relationship between PIPKIIα and the production of globins. Here, we investigated PIPKIIα gene and protein expression and protein localization in hematopoietic-derived cells during their differentiation, and the effects of PIPKIIα silencing on K562 cells. PIPKIIα silencing resulted in an increase in α and γ globins and a decrease in the proliferation of K562 cells without affecting cell cycle progression and apoptosis. In conclusion, using a cell line model, we showed that PIPKIIα is widely expressed in hematopoietic-derived cells, is localized in their cytoplasm and nucleus, and is upregulated during erythroid differentiation. We also showed that PIPKIIα silencing can induce α and γ globin expression and decrease cell proliferation in K562 cells.
Resumo:
Bone marrow is organized in specialized microenvironments known as 'marrow niches'. These are important for the maintenance of stem cells and their hematopoietic progenitors whose homeostasis also depends on other cell types present in the tissue. Extrinsic factors, such as infection and inflammatory states, may affect this system by causing cytokine dysregulation (imbalance in cytokine production) and changes in cell proliferation and self-renewal rates, and may also induce changes in the metabolism and cell cycle. Known to relate to chronic inflammation, obesity is responsible for systemic changes that are best studied in the cardiovascular system. Little is known regarding the changes in the hematopoietic system induced by the inflammatory state carried by obesity or the cell and molecular mechanisms involved. The understanding of the biological behavior of hematopoietic stem cells under obesity-induced chronic inflammation could help elucidate the pathophysiological mechanisms involved in other inflammatory processes, such as neoplastic diseases and bone marrow failure syndromes.
Resumo:
The aim of this study was to evaluate the structural and molecular effects of antiangiogenic therapies and finasteride on the ventral prostate of senile mice. 90 male FVB mice were divided into: Young (18 weeks old) and senile (52 weeks old) groups; finasteride group: finasteride (20mg/kg); SU5416 group: SU5416 (6 mg/kg); TNP-470 group: TNP-470 (15 mg/kg,) and SU5416+TNP-470 group: similar to the SU5416 and TNP-470 groups. After 21 days, prostate ventral lobes were collected for morphological, immunohistochemical and Western blotting analyses. The results demonstrated atrophy, occasional proliferative lesions and inflammatory cells in the prostate during senescence, which were interrupted and/or blocked by treatment with antiangiogenic drugs and finasteride. Decreased AR and endostatin reactivities, and an increase for ER-α, ER-β and VEGF, were seen in the senile group. Decreased VEGF and ER-α reactivities and increased ER-β reactivity were verified in the finasteride, SU5416 groups and especially in SU5416+TNP-470 group. The TNP-470 group showed reduced AR and ER-β protein levels. The senescence favored the occurrence of structural and/or molecular alterations suggesting the onset of malignant lesions, due to the imbalance in the signaling between the epithelium and stroma. The SU5416+TNP-470 treatment was more effective in maintaining the structural, hormonal and angiogenic factor balance in the prostate during senescence, highlighting the signaling of antiproliferation via ER-β.
Resumo:
The aim of the study was to analyze the frequency of epidermal growth factor receptor (EGFR) mutations in Brazilian non-small cell lung cancer patients and to correlate these mutations with response to benefit of platinum-based chemotherapy in non-small cell lung cancer (NSCLC). Our cohort consisted of prospective patients with NSCLCs who received chemotherapy (platinum derivates plus paclitaxel) at the [UNICAMP], Brazil. EGFR exons 18-21 were analyzed in tumor-derived DNA. Fifty patients were included in the study (25 with adenocarcinoma). EGFR mutations were identified in 6/50 (12 %) NSCLCs and in 6/25 (24 %) adenocarcinomas; representing the frequency of EGFR mutations in a mostly self-reported White (82.0 %) southeastern Brazilian population of NSCLCs. Patients with NSCLCs harboring EGFR exon 19 deletions or the exon 21 L858R mutation were found to have a higher chance of response to platinum-paclitaxel (OR 9.67 [95 % CI 1.03-90.41], p = 0.047). We report the frequency of EGFR activating mutations in a typical southeastern Brazilian population with NSCLC, which are similar to that of other countries with Western European ethnicity. EGFR mutations seem to be predictive of a response to platinum-paclitaxel, and additional studies are needed to confirm or refute this relationship.
Resumo:
Intermittent fasting (IF) is an often-used intervention to decrease body mass. In male Sprague-Dawley rats, 24 hour cycles of IF result in light caloric restriction, reduced body mass gain, and significant decreases in the efficiency of energy conversion. Here, we study the metabolic effects of IF in order to uncover mechanisms involved in this lower energy conversion efficiency. After 3 weeks, IF animals displayed overeating during fed periods and lower body mass, accompanied by alterations in energy-related tissue mass. The lower efficiency of energy use was not due to uncoupling of muscle mitochondria. Enhanced lipid oxidation was observed during fasting days, whereas fed days were accompanied by higher metabolic rates. Furthermore, an increased expression of orexigenic neurotransmitters AGRP and NPY in the hypothalamus of IF animals was found, even on feeding days, which could explain the overeating pattern. Together, these effects provide a mechanistic explanation for the lower efficiency of energy conversion observed. Overall, we find that IF promotes changes in hypothalamic function that explain differences in body mass and caloric intake.
Resumo:
Previous results provided evidence that Cratylia mollis seed lectin (Cramoll 1,4) promotes Trypanosoma cruzi epimastigotes death by necrosis via a mechanism involving plasma membrane permeabilization to Ca(2+) and mitochondrial dysfunction due to matrix Ca(2+) overload. In order to investigate the mechanism of Ca(2+) -induced mitochondrial impairment, experiments were performed analyzing the effects of this lectin on T. cruzi mitochondrial fraction and in isolated rat liver mitochondria (RLM), as a control. Confocal microscopy of T. cruzi whole cell revealed that Cramoll 1,4 binding to the plasma membrane glycoconjugates is followed by its internalization and binding to the mitochondrion. Electrical membrane potential (∆Ψm ) of T. cruzi mitochondrial fraction suspended in a reaction medium containing 10 μM Ca(2+) was significantly decreased by 50 μg/ml Cramoll 1,4 via a mechanism insensitive to cyclosporine A (CsA, membrane permeability transition (MPT) inhibitor), but sensitive to catalase or 125 mM glucose. In RLM suspended in a medium containing 10 μM Ca(2+) this lectin, at 50 μg/ml, induced increase in the rate of hydrogen peroxide release, mitochondrial swelling, and ∆Ψm disruption. All these mitochondrial alterations were sensitive to CsA, catalase, and EGTA. These results indicate that Cramoll 1, 4 leads to inner mitochondrial membrane permeabilization through Ca(2+) dependent mechanisms in both mitochondria. The sensitivity to CsA in RLM characterizes this lectin as a MPT inducer and the lack of CsA effect identifies a CsA-insensitive MPT in T. cruzi mitochondria.
Resumo:
Snakebite is a neglected disease and serious health problem in Brazil, with most bites being caused by snakes of the genus Bothrops. Although serum therapy is the primary treatment for systemic envenomation, it is generally ineffective in neutralizing the local effects of these venoms. In this work, we examined the ability of 7,8,3'-trihydroxy-4'-methoxyisoflavone (TM), an isoflavone from Dipteryx alata, to neutralize the neurotoxicity (in mouse phrenic nerve-diaphragm preparations) and myotoxicity (assessed by light microscopy) of Bothrops jararacussu snake venom in vitro. The toxicity of TM was assessed using the Salmonella microsome assay (Ames test). Incubation with TM alone (200 μg/mL) did not alter the muscle twitch tension whereas incubation with venom (40 μg/mL) caused irreversible paralysis. Preincubation of TM (200 μg/mL) with venom attenuated the venom-induced neuromuscular blockade by 84% ± 5% (mean ± SEM; n = 4). The neuromuscular blockade caused by bothropstoxin-I (BthTX-I), the major myotoxic PLA2 of this venom, was also attenuated by TM. Histological analysis of diaphragm muscle incubated with TM showed that most fibers were preserved (only 9.2% ± 1.7% were damaged; n = 4) compared to venom alone (50.3% ± 5.4% of fibers damaged; n = 3), and preincubation of TM with venom significantly attenuated the venom-induced damage (only 17% ± 3.4% of fibers damaged; n = 3; p < 0.05 compared to venom alone). TM showed no mutagenicity in the Ames test using Salmonella strains TA98 and TA97a with (+S9) and without (-S9) metabolic activation. These findings indicate that TM is a potentially useful compound for antagonizing the neuromuscular effects (neurotoxicity and myotoxicity) of B. jararacussu venom.
Resumo:
Phospholipases A2 (PLA2) are key enzymes for production of lipid mediators. We previously demonstrated that a snake venom sPLA2 named MT-III leads to prostaglandin (PG)E2 biosynthesis in macrophages by inducing the expression of cyclooxygenase-2 (COX-2). Herein, we explored the molecular mechanisms and signaling pathways leading to these MT-III-induced effects. Results demonstrated that MT-III induced activation of the transcription factor NF-κB in isolated macrophages. By using NF-κB selective inhibitors, the involvement of this factor in MT-III-induced COX-2 expression and PGE2 production was demonstrated. Moreover, MT-III-induced COX-2 protein expression and PGE2 release were attenuated by pretreatment of macrophages with SB202190, and Ly294002, and H-7-dihydro compounds, indicating the involvement of p38MAPK, PI3K, and PKC pathways, respectively. Consistent with this, MT-III triggered early phosphorylation of p38MAPK, PI3K, and PKC. Furthermore, SB202190, H-7-dihydro, but not Ly294002 treatment, abrogated activation of NF-κB induced by MT-III. Altogether, these results show for the first time that the induction of COX-2 protein expression and PGE2 release, which occur via NF-κB activation induced by the sPLA2-MT-III in macrophages, are modulated by p38MAPK and PKC, but not by PI3K signaling proteins.
Resumo:
Knowledge of the major effects governing desorption/ionization efficiency is required for the development and application of ambient mass spectrometry. Although all triacylglycerols (TAG) have the same favorable protonation and cationization sites, their desorption/ionization efficiencies can vary dramatically during easy ambient sonic-spray ionization because of structural differences in the carbon chain. To quantify this somewhat surprising and drastic effect, we have performed a systematic investigation of desorption/ionization efficiencies as a function of unsaturation and length for TAG as well as for diacylglycerols, monoacylglycerols and several phospholipids (PL). Affinities for Na(+) as a function of unsaturation level have also been assayed via comprehensive metadynamics calculations to understand the influence of this phenomenon on the ionization efficiency. The results suggest that dipole-dipole interactions within a carbon chain tuned by unsaturation sites govern ionization efficiency of TAG and PL.