2 resultados para freshwater parasite

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traira (Hoplias malabaricus) is a neotropical fish that is widely distributed in freshwater environments in South America. In the present study, we documented the occurrence of metacercariae of Austrodiplostomum spp. (Diplostomidae) in the eyes and cranial cavity of H. malabaricus and described parasite-induced behavioral changes in the host. The fish were collected from the upper São Francisco River, in the Serra da Canastra mountain range, Minas Gerais, transported alive to the laboratory, observed for 2 weeks, and subsequently examined for parasites. Of the 35 fish examined, 28 (80 %) had free metacercariae in the vitreous humor (mean intensity=95.4; mean abundance=76.3), and 24 (68.57 %) had free metacercariae in the cranial cavity, mainly concentrated below the floor of the brain, at the height of the ophthalmic lobe (mean intensity=12.91; mean abundance=8.85). Specimens of H. malabaricus with a high intensity of infection in the brain displayed changes in swimming behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interactions of carbon nanotubes with pesticides, such as carbofuran, classical contaminants (e.g., pesticides, polyaromatic hydrocarbons, heavy metals, and dyes) and emerging contaminants, including endocrine disruptors, are critical components of the environmental risks of this important class of carbon-based nanomaterials. In this work, we studied the modulation of acute carbofuran toxicity to the freshwater fish Nile tilapia (Oreochromis niloticus) by nitric acid treated multiwalled carbon nanotubes, termed HNO3-MWCNT. Nitric acid oxidation is a common chemical method employed for the purification, functionalisation and aqueous dispersion of carbon nanotubes. HNO3-MWCNT were not toxic to Nile tilapia at concentrations ranging from 0.1 to 3.0 mg/L for exposure times of up to 96 h. After 24, 48, 72 and 96 h, the LC50 values of carbofuran were 4.0, 3.2, 3.0 and 2.4 mg/mL, respectively. To evaluate the influence of carbofuran-nanotube interactions on ecotoxicity, we exposed the Nile tilapia to different concentrations of carbofuran mixed together with a non-toxic concentration of HNO3-MWCNT (1.0 mg/L). After 24, 48, 72, and 96 h of exposure, the LC50 values of carbofuran plus nanotubes were 3.7, 1.6, 0.7 and 0.5 mg/L, respectively. These results demonstrate that HNO3-MWCNT potentiate the acute toxicity of carbofuran, leading to a more than five-fold increase in the LC50 values. Furthermore, the exposure of Nile tilapia to carbofuran plus nanotubes led to decreases in both oxygen consumption and swimming capacity compared to the control. These findings indicate that carbon nanotubes could act as pesticide carriers affecting fish survival, metabolism and behaviour.