4 resultados para discriminant analysis and cluster analysis

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frankfurters are widely consumed all over the world, and the production requires a wide range of meat and non-meat ingredients. Due to these characteristics, frankfurters are products that can be easily adulterated with lower value meats, and the presence of undeclared species. Adulterations are often still difficult to detect, due the fact that the adulterant components are usually very similar to the authentic product. In this work, FT-Raman spectroscopy was employed as a rapid technique for assessing the quality of frankfurters. Based on information provided by the Raman spectra, a multivariate classification model was developed to identify the frankfurter type. The aim was to study three types of frankfurters (chicken, turkey and mixed meat) according to their Raman spectra, based on the fatty vibrational bands. Classification model was built using partial least square discriminant analysis (PLS-DA) and the performance model was evaluated in terms of sensitivity, specificity, accuracy, efficiency and Matthews's correlation coefficient. The PLS-DA models give sensitivity and specificity values on the test set in the ranges of 88%-100%, showing good performance of the classification models. The work shows the Raman spectroscopy with chemometric tools can be used as an analytical tool in quality control of frankfurters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method using the ring-oven technique for pre-concentration in filter paper discs and near infrared hyperspectral imaging is proposed to identify four detergent and dispersant additives, and to determine their concentration in gasoline. Different approaches were used to select the best image data processing in order to gather the relevant spectral information. This was attained by selecting the pixels of the region of interest (ROI), using a pre-calculated threshold value of the PCA scores arranged as histograms, to select the spectra set; summing up the selected spectra to achieve representativeness; and compensating for the superimposed filter paper spectral information, also supported by scores histograms for each individual sample. The best classification model was achieved using linear discriminant analysis and genetic algorithm (LDA/GA), whose correct classification rate in the external validation set was 92%. Previous classification of the type of additive present in the gasoline is necessary to define the PLS model required for its quantitative determination. Considering that two of the additives studied present high spectral similarity, a PLS regression model was constructed to predict their content in gasoline, while two additional models were used for the remaining additives. The results for the external validation of these regression models showed a mean percentage error of prediction varying from 5 to 15%.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The new social panorama resulting from aging of the Brazilian population is leading to significant transformations within healthcare. Through the cluster analysis strategy, it was sought to describe the specific care demands of the elderly population, using frailty components. Cross-sectional study based on reviewing medical records, conducted in the geriatric outpatient clinic, Hospital de Clínicas, Universidade Estadual de Campinas (Unicamp). Ninety-eight elderly users of this clinic were evaluated using cluster analysis and instruments for assessing their overall geriatric status and frailty characteristics. The variables that most strongly influenced the formation of clusters were age, functional capacities, cognitive capacity, presence of comorbidities and number of medications used. Three main groups of elderly people could be identified: one with good cognitive and functional performance but with high prevalence of comorbidities (mean age 77.9 years, cognitive impairment in 28.6% and mean of 7.4 comorbidities); a second with more advanced age, greater cognitive impairment and greater dependence (mean age 88.5 years old, cognitive impairment in 84.6% and mean of 7.1 comorbidities); and a third younger group with poor cognitive performance and greater number of comorbidities but functionally independent (mean age 78.5 years old, cognitive impairment in 89.6% and mean of 7.4 comorbidities). These data characterize the profile of this population and can be used as the basis for developing efficient strategies aimed at diminishing functional dependence, poor self-rated health and impaired quality of life.