40 resultados para cytotoxicity assays
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Graphene and carbon nanotube nanocomposite (GCN) was synthesised and applied in gene transfection of pIRES plasmid conjugated with green fluorescent protein (GFP) in NIH-3T3 and NG97 cell lines. The tips of the multi-walled carbon nanotubes (MWCNTs) were exfoliated by oxygen plasma etching, which is also known to attach oxygen content groups on the MWCNT surfaces, changing their hydrophobicity. The nanocomposite was characterised by high resolution scanning electron microscopy; energy-dispersive X-ray, Fourier transform infrared and Raman spectroscopies, as well as zeta potential and particle size analyses using dynamic light scattering. BET adsorption isotherms showed the GCN to have an effective surface area of 38.5m(2)/g. The GCN and pIRES plasmid conjugated with the GFP gene, forming π-stacking when dispersed in water by magnetic stirring, resulting in a helical wrap. The measured zeta potential confirmed that the plasmid was connected to the nanocomposite. The NIH-3T3 and NG97 cell lines could phagocytize this wrap. The gene transfection was characterised by fluorescent protein produced in the cells and pictured by fluorescent microscopy. Before application, we studied GCN cell viability in NIH-3T3 and NG97 line cells using both MTT and Neutral Red uptake assays. Our results suggest that GCN has moderate stability behaviour as colloid solution and has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity and good transfection efficiency.
Resumo:
Paraquat is a fast acting nonselective contact herbicide that is extensively used worldwide. However, the aqueous solubility and soil sorption of this compound can cause problems of toxicity in nontarget organisms. This work investigates the preparation and characterization of nanoparticles composed of chitosan and sodium tripolyphosphate (TPP) to produce an efficient herbicidal formulation that was less toxic and could be used for safer control of weeds in agriculture. The toxicities of the formulations were evaluated using cell culture viability assays and the Allium cepa chromosome aberration test. The herbicidal activity was investigated in cultivations of maize (Zea mays) and mustard (Brassica sp.), and soil sorption of the nanoencapsulated herbicide was measured. The efficiency association of paraquat with the nanoparticles was 62.6 ± 0.7%. Encapsulation of the herbicide resulted in changes in its diffusion and release as well as its sorption by soil. Cytotoxicity and genotoxicity assays showed that the nanoencapsulated herbicide was less toxic than the pure compound, indicating its potential to control weeds while at the same time reducing environmental impacts. Measurements of herbicidal activity showed that the effectiveness of paraquat was preserved after encapsulation. It was concluded that the encapsulation of paraquat in nanoparticles can provide a useful means of reducing adverse impacts on human health and the environment, and that the formulation therefore has potential for use in agriculture.
Resumo:
Caryocar brasiliense Camb (Pequi) is a typical Brazilian Cerrado fruit tree. Its fruit is used as a vitamin source for culinary purposes and as a source of oil for the manufacture of cosmetics. C. brasiliense supercritical CO2 extracts exhibit antimicrobial activity against the bacteria Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus and also possess antioxidant activity. This study was designed to evaluate the in vitro cytotoxicity and phototoxicity of the supercritical CO2 extract obtained from the leaves of this species. In vitro cytotoxicity and phototoxicity of C. brasiliense supercritical CO2 extracts were assessed using a tetrazolium-based colorimetric assay (XTT) and Neutral Red methods. We found that the C. brasiliense (Pequi) extract obtained by supercritical CO2 extraction did not present cytotoxic and phototoxic hazards. This finding suggests that the extract may be useful for the development of cosmetic and/or pharmaceutical products.
Resumo:
A new platinum(II) complex with the amino acid L-tryptophan (trp), named Pt-trp, was synthesized and characterized. Elemental, thermogravimetric and ESI-QTOF mass spectrometric analyses led to the composition [Pt(C11H11N2O2)2]⋅6H2O. Infrared spectroscopic data indicate the coordination of trp to Pt(II) through the oxygen of the carboxylate group and also through the nitrogen atom of the amino group. The (13)C CP/MAS NMR spectroscopic data confirm coordination through the oxygen atom of the carboxylate group, while the (15)N CP/MAS NMR data confirm coordination of the nitrogen of the NH2 group to the metal. Density functional theory (DFT) studies were applied to evaluate the cis and trans coordination modes of trp to platinum(II). The trans isomer was shown to be energetically more stable than the cis one. The Pt-trp complex was evaluated as a cytotoxic agent against SK-Mel 103 (human melanoma) and Panc-1 (human pancreatic carcinoma) cell lines. The complex was shown to be cytotoxic over the considered cells.
Resumo:
The aim of this study was to evaluate the degree of conversion (DC) and the cytotoxicity of photo-cured experimental resin composites containing 4-(N,N-dimethylamino)phenethyl alcohol (DMPOH) combined to the camphorquinone (CQ) compared with ethylamine benzoate (EDAB). The resin composites were mechanically blended using 35 wt% of an organic matrix and 65 wt% of filler loading. To this matrix was added 0.2 wt% of CQ and 0.2 wt% of one of the reducing agents tested. 5x1 mm samples (n=5) were previously submitted to DC measurement and then pre-immersed in complete culture medium without 10% (v/v) bovine serum for 1 h or 24 h at 37 °C in a humidifier incubator with 5% CO2 and 95% humidity to evaluate the cytotoxic effects of experimental resin composites using the MTT assay on immortalized human keratinocytes cells. As a result of absence of normal distribution, the statistical analysis was performed using the nonparametric Kruskal-Wallis to evaluate the cytotoxicity and one-way analysis of variance to evaluate the DC. For multiple comparisons, cytotoxicity statistical analyses were submitted to Student-Newman-Keuls and DC analysis to Tukey's HSD post-hoc test (=0.05). No significant differences were found between the DC of DMPOH (49.9%) and EDAB (50.7%). 1 h outcomes showed no significant difference of the cell viability between EDAB (99.26%), DMPOH (94.85%) and the control group (100%). After 24 h no significant difference were found between EDAB (48.44%) and DMPOH (38.06%), but significant difference was found compared with the control group (p>0.05). DMPOH presented similar DC and cytotoxicity compared with EDAB when associated with CQ.
Resumo:
To characterize liposomal-lidocaine formulations for topical use on oral mucosa and to compare their in vitro permeation and in vivo anesthetic efficacy with commercially available lidocaine formulations. Large unilamellar liposomes (400 nm) containing lidocaine were prepared using phosphatidylcholine, cholesterol, and α-tocoferol (4:3:0.07, w:w:w) and were characterized in terms of membrane/water partition coefficient, encapsulation efficiency, size, polydispersity, zeta potential, and in vitro release. In vitro permeation across pig palatal mucosa and in vivo topical anesthetic efficacy on the palatal mucosa in healthy volunteers (double-blinded cross-over, placebo controlled study) were performed. The following formulations were tested: liposome-encapsulated 5% lidocaine (Liposome-Lido5); liposome-encapsulated 2.5% lidocaine (Liposome-Lido2.5); 5% lidocaine ointment (Xylocaina®), and eutectic mixture of lidocaine and prilocaine 2.5% (EMLA®). The Liposome-Lido5 and EMLA showed the best in vitro permeation parameters (flux and permeability coefficient) in comparison with Xylocaina and placebo groups, as well as the best in vivo topical anesthetic efficacy. We successfully developed and characterized a liposome encapsulated 5% lidocaine gel. It could be considered an option to other topical anesthetic agents for oral mucosa.
Resumo:
Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Secondary metabolites from Curvularia eragrostidis and Drechslera dematioidea, Clusia sp. floral resin, alkaloids from Pilocarpus alatus, salicylideneanilines, piperidine amides, the amine 1-cinnamylpiperazine and chiral pyridinium salts were assayed on Mycobacterium tuberculosis H37Rv. N-(salicylidene)-2-hydroxyaniline was the most effective compound with a minimal inhibitory concentration (MIC) of 8 µmol/L. Dihydrocurvularin was moderately effective with a MIC of 40 µmol/L. Clusia sp. floral resin and a gallocatechin-epigallocatechin mixture showed MIC of 0.02 g/L and 38 µmol/L, respectively. The cytotoxicity was evaluated for N-(salicylidene)-2-hydroxyaniline, curvularin, dihydrocurvularin and Clusia sp. floral resin, and the selectivity indexes were > 125, 0.47, 0.75 and 5, respectively.
Resumo:
Films of silk fibroin (SF) and sodium alginate (SA) blends were prepared by solution casting technique. The miscibility of SF and SA in those blends was evaluated and scanning electron microscopy (SEM) revealed that SF/SA 25/75 wt.% blends underwent microscopic phase separation, resulting in globular structures composed mainly of SF. X-ray diffraction indicated the amorphous nature of these blends, even after a treatment with ethanol that turned them insoluble in water. Thermal analyses of blends showed the peaks of degradation of pristine SF and SA shifted to intermediate temperatures. Water vapor permeability, swelling capacity and tensile strength of SF films could be enhanced by blending with SA. Cell viability remained between 90 and 100%, as indicated by in vitro cytotoxicity test. The SF/SA blend with self-assembled SF globules can be used to modulate structural and mechanical properties of the final material and may be used in designing high performance wound dressing.
Resumo:
For the first time, oxygen terminated cellulose carbon nanoparticles (CCN) was synthesised and applied in gene transfection of pIRES plasmid. The CCN was prepared from catalytic of polyaniline by chemical vapour deposition techniques. This plasmid contains one gene that encodes the green fluorescent protein (GFP) in eukaryotic cells, making them fluorescent. This new nanomaterial and pIRES plasmid formed π-stacking when dispersed in water by magnetic stirring. The frequencies shift in zeta potential confirmed the plasmid strongly connects to the nanomaterial. In vitro tests found that this conjugation was phagocytised by NG97, NIH-3T3 and A549 cell lines making them fluorescent, which was visualised by fluorescent microscopy. Before the transfection test, we studied CCN in cell viability. Both MTT and Neutral Red uptake tests were carried out using NG97, NIH-3T3 and A549 cell lines. Further, we use metabolomics to verify if small amounts of nanomaterial would be enough to cause some cellular damage in NG97 cells. We showed two mechanisms of action by CCN-DNA complex, producing an exogenous protein by the transfected cell and metabolomic changes that contributed by better understanding of glioblastoma, being the major finding of this work. Our results suggested that this nanomaterial has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity, good transfection efficiency, and low cell damage in small amounts of nanomaterials in metabolomic tests.
Resumo:
Basic phospholipases A2 (PLA2) are toxic and induce a wide spectrum of pharmacological effects, although the acidic enzyme types are not lethal or cause low lethality. Therefore, it is challenging to elucidate the mechanism of action of acidic phospholipases. This study used the acidic non-toxic Ba SpII RP4 PLA2 from Bothrops alternatus as an antigen to develop anti-PLA2 IgG antibodies in rabbits and used in vivo assays to examine the changes in crude venom when pre-incubated with these antibodies. Using Ouchterlony and western blot analyses on B. alternatus venom, we examined the specificity and sensitivity of phospholipase A2 recognition by the specific antibodies (anti-PLA2 IgG). Neutralisation assays using a non-toxic PLA2 antigen revealed unexpected results. The (indirect) haemolytic activity of whole venom was completely inhibited, and all catalytically active phospholipases A2 were blocked. Myotoxicity and lethality were reduced when the crude venom was pre-incubated with anti-PLA2 immunoglobulins. CK levels in the skeletal muscle were significantly reduced at 6 h, and the muscular damage was more significant at this time-point compared to 3 and 12 h. When four times the LD50 was used (224 μg), half the animals treated with the venom-anti PLA2 IgG mixture survived after 48 h. All assays performed with the specific antibodies revealed that Ba SpII RP4 PLA2 had a synergistic effect on whole-venom toxicity. IgG antibodies against the venom of the Argentinean species B. alternatus represent a valuable tool for elucidation of the roles of acidic PLA2 that appear to have purely digestive roles and for further studies on immunotherapy and snake envenoming in affected areas in Argentina and Brazil.
Resumo:
Neglected agricultural products (NAPs) are defined as discarded material in agricultural production. Corn cobs are a major waste of agriculture maize. Here, a methanolic extract from corn cobs (MEC) was obtained. MEC contains phenolic compounds, protein, carbohydrates (1.4:0.001:0.001). We evaluated the in vitro and in vivo antioxidant potential of MEC. Furthermore, its antiproliferative property against tumor cells was assessed through MTT assays and proteins related to apoptosis in tumor cells were examined by western blot. MEC showed no hydroxyl radical scavenger capacity, but it showed antioxidant activity in Total Antioxidant Capacity and DPPH scavenger ability assays. MEC showed higher Reducing Power than ascorbic acid and exhibited high Superoxide Scavenging activity. In tumor cell culture, MEC increased catalase, metallothionein and superoxide dismutase expression in accordance with the antioxidant tests. In vivo antioxidant test, MEC restored SOD and CAT, decreased malondialdehyde activities and showed high Trolox Equivalent Antioxidant Capacity in animals treated with CCl4. Furthermore, MEC decreased HeLa cells viability by apoptosis due an increase of Bax/Bcl-2 ratio, caspase 3 active. Protein kinase C expression increased was also detected in treated tumor cells. Thus, our findings pointed out the biotechnological potential of corn cobs as a source of molecules with pharmacological activity.
Resumo:
To evaluate the antimicrobial efficacy of Clearfil SE Protect (CP) and Clearfil SE Bond (CB) after curing and rinsed against five individual oral microorganisms as well as a mixture of bacterial culture prepared from the selected test organisms. Bacterial suspensions were prepared from single species of Streptococcus mutans, Streptococcus sobrinus, Streptococcus gordonii, Actinomyces viscosus and Lactobacillus lactis, as well as mixed bacterial suspensions from these organisms. Dentin bonding system discs (6 mm×2 mm) were prepared, cured, washed and placed on the bacterial suspension of single species or multispecies bacteria for 15, 30 and 60 min. MTT, Live/Dead bacterial viability (antibacterial effect), and XTT (metabolic activity) assays were used to test the two dentin system's antibacterial effect. All assays were done in triplicates and each experiment repeated at least three times. Data were submitted to ANOVA and Scheffe's f-test (5%). Greater than 40% bacteria killing was seen within 15 min, and the killing progressed with increasing time of incubation with CP discs. However, a longer (60 min) period of incubation was required by CP to achieve similar antimicrobial effect against mixed bacterial suspension. CB had no significant effect on the viability or metabolic activity of the test microorganisms when compared to the control bacterial culture. CP was significantly effective in reducing the viability and metabolic activity of the test organisms. The results demonstrated the antimicrobial efficacy of CP both on single and multispecies bacterial culture. CP may be beneficial in reducing bacterial infections in cavity preparations in clinical dentistry.
Resumo:
Hybrid bioisoster derivatives from N-acylhydrazones and furoxan groups were designed with the objective of obtaining at least a dual mechanism of action: cruzain inhibition and nitric oxide (NO) releasing activity. Fifteen designed compounds were synthesized varying the substitution in N-acylhydrazone and in furoxan group as well. They had its anti-Trypanosoma cruzi activity in amastigotes forms, NO releasing potential and inhibitory cruzain activity evaluated. The two most active compounds (6, 14) both in the parasite amastigotes and in the enzyme contain the nitro group in para position of the aromatic ring. The permeability screening in Caco-2 cell and cytotoxicity assay in human cells were performed for those most active compounds and both showed to be less cytotoxic than the reference drug, benznidazole. Compound 6 was the most promising, since besides activity it showed good permeability and selectivity index, higher than the reference drug. Thereby the compound 6 was considered as a possible candidate for additional studies.
Resumo:
The aim of this study was to evaluate the mutagenicity (clastogenicity/aneugenicity) of a glycolic extract of Ziziphus joazeiro bark (GEZJ) by the micronucleus assay in mice bone marrow. Antimutagenic activity was also assessed using treatments associated with GEZJ and doxorubicin (DXR). Mice were evaluated 24-48 h after exposure to positive (N-nitroso-N-ethylurea, NEU - 50 mg.kg(-1) and DXR - 5 mg.kg(-1)) and negative (150 mM NaCl) controls, as well as treatment with GEZJ (0.5-2 g.kg(-1)), GEZJ (2 g.kg(-1)) + NEU and GEZJ (2 g.kg(-1)) + DXR. There were no significant differences in the frequencies of micronucleated polychromatic erythrocytes in mice treated with GEJZ and GEJZ + DXR compared to the negative controls, indicating that GEZJ was not mutagenic. Analysis of the polychromatic:normochromatic erythrocyte ratio revealed significant differences in the responses to doses of 0.5 g.kg(-1) and 1-2 g.kg(-1) and the positive control (NEU). These results indicated no systemic toxicity and moderate toxicity at lower and higher doses of GEZJ. The lack of mutagenicity and systemic toxicity in the antimutagenic assays, especially for treatment with GEZJ + DXR, suggested that phytochemical compounds in Z. joazeiro bark attenuated DXR-induced mutagenicity and the moderate systemic toxicity of a high dose of Z. joazeiro bark (2 g.kg(-1)). Further studies on the genotoxicity of Z. joazeiro extracts are necessary to establish the possible health risk in humans and to determine the potential as a chemopreventive agent for therapeutic use.
Resumo:
The epididymis has an important role in the maturation of sperm for fertilization, but little is known about the epididymal molecules involved in sperm modifications during this process. We have previously described the expression pattern for an antigen in epididymal epithelial cells that reacts with the monoclonal antibody (mAb) TRA 54. Immunohistochemical and immunoblotting analyses suggest that the epitope of the epididymal antigen probably involves a sugar moiety that is released into the epididymal lumen in an androgen-dependent manner and subsequently binds to luminal sperm. Using column chromatography, SDS-PAGE with in situ digestion and mass spectrometry, we have identified the protein recognized by mAb TRA 54 in mouse epididymal epithelial cells. The ∼65 kDa protein is part of a high molecular mass complex (∼260 kDa) that is also present in the sperm acrosomal vesicle and is completely released after the acrosomal reaction. The amino acid sequence of the protein corresponded to that of albumin. Immunoprecipitates with anti-albumin antibody contained the antigen recognized by mAb TRA 54, indicating that the epididymal molecule recognized by mAb TRA 54 is albumin. RT-PCR detected albumin mRNA in the epididymis and fertilization assays in vitro showed that the glycoprotein complex containing albumin was involved in the ability of sperm to recognize and penetrate the egg zona pellucida. Together, these results indicate that epididymal-derived albumin participates in the formation of a high molecular mass glycoprotein complex that has an important role in egg fertilization.