16 resultados para compressive loading
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
The mesoporous SBA-15 silica with uniform hexagonal pore, narrow pore size distribution and tuneable pore diameter was organofunctionalized with glutaraldehyde-bridged silylating agent. The precursor and its derivative silicas were ibuprofen-loaded for controlled delivery in simulated biological fluids. The synthesized silicas were characterized by elemental analysis, infrared spectroscopy, (13)C and (29)Si solid state NMR spectroscopy, nitrogen adsorption, X-ray diffractometry, thermogravimetry and scanning electron microscopy. Surface functionalization with amine containing bridged hydrophobic structure resulted in significantly decreased surface area from 802.4 to 63.0 m(2) g(-1) and pore diameter 8.0-6.0 nm, which ultimately increased the drug-loading capacity from 18.0% up to 28.3% and a very slow release rate of ibuprofen over the period of 72.5h. The in vitro drug release demonstrated that SBA-15 presented the fastest release from 25% to 27% and SBA-15GA gave near 10% of drug release in all fluids during 72.5 h. The Korsmeyer-Peppas model better fits the release data with the Fickian diffusion mechanism and zero order kinetics for synthesized mesoporous silicas. Both pore sizes and hydrophobicity influenced the rate of the release process, indicating that the chemically modified silica can be suggested to design formulation of slow and constant release over a defined period, to avoid repeated administration.
Resumo:
Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections.
Resumo:
The aim of this study was to use mechanical and photoelastic tests to compare the performance of cannulated screws with other fixation methods in mandibular symphysis fractures. Ten polyurethane mandibles were allocated to each group and fixed as follows: group PRP, 2 perpendicular miniplates; group PLL, 1 miniplate and 1 plate, parallel; and group CS, 2 cannulated screws. Vertical linear loading tests were performed. The differences between mean values were analyzed with the Tukey test. The photoelastic test was carried out using a polariscope. The results revealed differences between the CS and PRP groups at 1, 3, 5, and 10 millimeters of displacement. The photoelastic test confirmed higher stress concentration in all groups close to the mandibular base, whereas the CS group showed it throughout the region assessed. Conical cannulated screws performed well in mechanical and photoelastic tests.
Resumo:
In this work we report new silicon and germanium tubular nanostructures with no corresponding stable carbon analogues. The electronic and mechanical properties of these new tubes were investigated through ab initio methods. Our results show that these structures have lower energy than their corresponding nanoribbon structures and are stable up to high temperatures (500 and 1000 K, for silicon and germanium tubes, respectively). Both tubes are semiconducting with small indirect band gaps, which can be significantly altered by both compressive and tensile strains. Large bandgap variations of almost 50% were observed for strain rates as small as 3%, suggesting their possible applications in sensor devices. They also present high Young's modulus values (0.25 and 0.15 TPa, respectively). TEM images were simulated to help in the identification of these new structures.
Resumo:
The aim of this study was to evaluate by photoelastic analysis stress distribution on short and long implants of two dental implant systems with 2-unit implant-supported fixed partial prostheses of 8 mm and 13 mm heights. Sixteen photoelastic models were divided into 4 groups: I: long implant (5 × 11 mm) (Neodent), II: long implant (5 × 11 mm) (Bicon), III: short implant (5 × 6 mm) (Neodent), and IV: short implants (5 × 6 mm) (Bicon). The models were positioned in a circular polariscope associated with a cell load and static axial (0.5 Kgf) and nonaxial load (15°, 0.5 Kgf) were applied to each group for both prosthetic crown heights. Three-way ANOVA was used to compare the factors implant length, crown height, and implant system (α = 0.05). The results showed that implant length was a statistically significant factor for both axial and nonaxial loading. The 13 mm prosthetic crown did not result in statistically significant differences in stress distribution between the implant systems and implant lengths studied, regardless of load type (P > 0.05). It can be concluded that short implants showed higher stress levels than long implants. Implant system and length was not relevant factors when prosthetic crown height were increased.
Resumo:
The aim of the present work was to produce a cationic solid lipid nanoparticle (SLN) as non-viral vector for protein delivery. Cationic SLN were produced by double emulsion method, composed of softisan(®) 100, cetyltrimethylammonium bromide (CTAB), Tween(®) 80, Span(®) 80, glycerol and lipoid(®) S75 loading insulin as model protein. The formulation was characterized in terms of mean hydrodynamic diameter (z-ave), polydispersity index (PI), zeta potential (ZP), stability during storage time, stability after lyophilization, effect of toxicity and transfection ability in HeLa cells, in vitro release profile and morphology. SLN were stable for 30days and showed minimal changes in their physicochemical properties after lyophilization. The particles exhibited a relatively slow release, spherical morphology and were able to transfect HeLa cells, but toxicity remained an obstacle. Results suggest that SLN are nevertheless promising for delivery of proteins or nucleic acids for gene therapy.
Resumo:
The aim of this study was to evaluate the degree of conversion (DC) and the cytotoxicity of photo-cured experimental resin composites containing 4-(N,N-dimethylamino)phenethyl alcohol (DMPOH) combined to the camphorquinone (CQ) compared with ethylamine benzoate (EDAB). The resin composites were mechanically blended using 35 wt% of an organic matrix and 65 wt% of filler loading. To this matrix was added 0.2 wt% of CQ and 0.2 wt% of one of the reducing agents tested. 5x1 mm samples (n=5) were previously submitted to DC measurement and then pre-immersed in complete culture medium without 10% (v/v) bovine serum for 1 h or 24 h at 37 °C in a humidifier incubator with 5% CO2 and 95% humidity to evaluate the cytotoxic effects of experimental resin composites using the MTT assay on immortalized human keratinocytes cells. As a result of absence of normal distribution, the statistical analysis was performed using the nonparametric Kruskal-Wallis to evaluate the cytotoxicity and one-way analysis of variance to evaluate the DC. For multiple comparisons, cytotoxicity statistical analyses were submitted to Student-Newman-Keuls and DC analysis to Tukey's HSD post-hoc test (=0.05). No significant differences were found between the DC of DMPOH (49.9%) and EDAB (50.7%). 1 h outcomes showed no significant difference of the cell viability between EDAB (99.26%), DMPOH (94.85%) and the control group (100%). After 24 h no significant difference were found between EDAB (48.44%) and DMPOH (38.06%), but significant difference was found compared with the control group (p>0.05). DMPOH presented similar DC and cytotoxicity compared with EDAB when associated with CQ.
Resumo:
Didanosine-loaded chitosan microspheres were developed applying a surface-response methodology and using a modified Maximum Likelihood Classification. The operational conditions were optimized with the aim of maintaining the active form of didanosine (ddI), which is sensitive to acid pH, and to develop a modified and mucoadhesive formulation. The loading of the drug within the chitosan microspheres was carried out by ionotropic gelation technique with sodium tripolyphosphate (TPP) as cross-linking agent and magnesium hydroxide (Mg(OH)2) to assure the stability of ddI. The optimization conditions were set using a surface-response methodology and applying the Maximum Likelihood Classification, where the initial chitosan concentration, TPP and ddI concentration were set as the independent variables. The maximum ddI-loaded in microspheres (i.e. 1433mg of ddI/g chitosan), was obtained with 2% (w/v) chitosan and 10% TPP. The microspheres depicted an average diameter of 11.42μm and ddI was gradually released during 2h in simulated enteric fluid.
Resumo:
Ropivacaine (RVC) is an aminoamide local anesthetic widely used in surgical procedures. Studies with RVC encapsulated in liposomes and complexed in cyclodextrins have shown good results, but in order to use RVC for lengthy procedures and during the postoperative period, a still more prolonged anesthetic effect is required. This study therefore aimed to provide extended RVC release and increased upload using modified liposomes. Three types of vesicles were studied: (i) large multilamellar vesicle (LMV), (ii) large multivesicular vesicle (LMVV) and (iii) large unilamellar vesicle (LUV), prepared with egg phosphatidylcholine/cholesterol/α-tocopherol (4:3:0.07 mol%) at pH 7.4. Ionic gradient liposomes (inside: pH 5.5, pH 5.5 + (NH4)2SO4 and pH 7.4 + (NH4)2SO4) were prepared and showed improved RVC loading, compared to conventional liposomes (inside: pH 7.4). An high-performance liquid chromatography analytical method was validated for RVC quantification. The liposomes were characterized in terms of their size, zeta potential, polydispersion, morphology, RVC encapsulation efficiency (EE(%)) and in vitro RVC release. LMVV liposomes provided better performance than LMV or LUV. The best formulations were prepared using pH 5.5 (LMVV 5.5in) or pH 7.4 with 250 mM (NH4)2SO4 in the inner aqueous core (LMVV 7.4in + ammonium sulfate), enabling encapsulation of as much as 2% RVC, with high uptake (EE(%) ∼70%) and sustained release (∼25 h). The encapsulation of RVC in ionic gradient liposomes significantly extended the duration of release of the anesthetic, showing that this strategy could be a viable means of promoting longer-term anesthesia during surgical procedures and during the postoperative period.
Resumo:
This work was done with the objective of studying some physical and mechanical characteristics of the sugarcane bagasse ash added to a soil-cement mixture, in order to obtain an alternative construction material. The sugarcane bagasse ash pre-treatment included both sieving and grinding, before mixing with soil and cement. Different proportions of cement-ash were tested by determining its standard consistence and its compressive resistance at 7 and 28 days age. The various treatments were subsequently applied to the specimens molded with different soil-cement-ash mixtures which in turns were submitted to compaction, unconfined compression and water absorption laboratory tests. The results showed that it is possible to replace up to 20% of Portland cement by sugarcane bagasse ash without any damage to the mixture's compressive strength.
Resumo:
The aim of this research was to study the effect of chemical additives (lime and Portland cement) associated with sodium silicate on soil in order to obtain compressed soil bricks. Mini panels were constructed with such bricks being their physical and mechanical characteristics determined in laboratory conditions and their behavior evaluated through the association of destructive and non-destructive methods. For this purpose a sandy soil and a finely divided one were added to Portland cement and lime in the dosage of 6% and 10% taken in dry weight basis in relation to the dry soil. The sodium silicate dosage of 4% was also taken in dry weight basis in relation to the dry soil-cement or to the dry soil-lime. The compressed soil bricks were cured in a humidity chamber for 7; 28; 56 and 91 days. The bricks were laid on the fourteenth day to form prismatic mini panels each one with four layers of bricks. After 28; 56 and 91 days the mini panels were submitted to both; ultrasonic and compressive tests to determine its elastic properties (dynamic modulus) and the compressive resistance. The best results in terms of compressive strength, water absorption capacity or dynamic elastic modulus, were reached by the sandy soil added to 10% of Portland cement or lime associated with sodium silicate.
Resumo:
Rice husk, employed as an energy source at milling industries in Brazil generates, after burning, a dark ash. This residue is not yet conveniently disposed, being currently dumped on large areas, causing environmental problems. This research intended to evaluate the applications of residual rice husk ashes (RHA) as a partial replacement of cement for mortar production. Rice husk ash was chemically characterized through X-ray fluorescence, determination of carbon content, X-ray diffraction, and laser granulometric analysis. Mortar specimens were submitted to two different exposure conditions: internal and external environments at a maximum period of five months. Physical-mechanical testing were compressive strength and ultrasonic pulse velocity (UPV). Although presenting good mechanical performance, the mortar based on ash (RHA) did not present pozolanicity but it can be employed in cement matrices as inert material (filler).
Resumo:
The objective of this study was to quantify the effect of plonk on compressive behavior and mechanical attributes such as consistency, optimum moisture for compaction and maximum density of a Red-Yellow Latosol (Oxisol) to evaluate the effect of plonk and compaction state in splashed particles, from Lavras (MG) region. The plonk was obtained from an artisanal sugarcane brandy alembic. Undisturbed and disturbed soil samples were collected at 0 to 3 cm and 60 to 63 cm depths. Disturbed soil samples were used for soil characterization, determination of consistence limits and Normal Proctor essay after material incubation with plonk. Undisturbed soil samples were saturated with plonk or distilled water (control) during 48 hours for testing the compressibility and resistance to splash by using simulated rainfall. The plonk altered the consistence limits of studied layers. For the 0-3 cm layer, the plonk reduced the friable range, and for the 60-63 cm layer the effect was in the opposite direction. For both layers, the plonk increased Dmax and decreased Uoptimum. Regardless of the plonk treatment, both layers presented the same load support capacity. The compaction degree of samples influenced the splash erosion. The increase of the applied pressure over the samples resulted in increase of splash material quantity. At the 60-63 cm layer, the plonk treatment reduced the splash material quantity by increasing the applied pressure, mainly when the samples were at field capacity.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física