3 resultados para celulose modificada com grupos p-aminibenzóico
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
PURPOSE: To evaluate the ocular surface toxicity of two nitric oxide donors in ex vivo and in vivo animal models: S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylcysteine (SNAC) in a hydroxypropyl methylcellulose (HPMC) matrix at final concentrations 1.0 and 10.0 mM. METHODS: Ex vivo GSNO and SNAC toxicities were clinically and histologically analyzed using freshly excised pig eyeballs. In vivo experiments were performed with 20 albino rabbits which were randomized into 4 groups (5 animals each): Groups 1 and 2 received instillations of 150 µL of aqueous HPMC solution containing GSNO 1.0 and 10.0 mM, respectively, in one of the eyes; Groups 3 and 4 received instillations of 150 µL of aqueous HPMC solution-containing SNAC 1.0 and 10.0 mM, respectively, in one of the eyes. The contralateral eyes in each group received aqueous HPMC as a control. All animals underwent clinical evaluation on a slit lamp and the eyes were scored according to a modified Draize eye test and were histologically analyzed. RESULTS: Pig eyeballs showed no signs of perforation, erosion, corneal opacity or other gross damage. These findings were confirmed by histological analysis. There was no difference between control and treated rabbit eyes according to the Draize eye test score in all groups (p>0.05). All formulations showed a mean score under 1 and were classified as non-irritating. There was no evidence of tissue toxicity in the histological analysis in all animals. CONCLUSION: Aqueous HPMC solutions containing GSNO and SNAC at concentrations up to 10.0 mM do not induce ocular irritation.
Resumo:
The electrochemical properties of methylene blue immobilized on cellulose/TiO2 and mixed oxide SiO2/TiO2 matrices were investigated by means of cyclic voltammetry. The electron mediator property of the methylene blue was optimized using a factorial design, consisting of four factors in two levels. The experimental observations and data analyses on the system indicate that the lowest peak separation occurs for Sil/TiOAM, 1.0 mol L-1 KCl solution and 20 mV s-1 scan rate, while values of current ratio closest to unity were found for Cel/TiOAM independent of electrolyte concentration, 0.2 or 1.0 mol L-1, and scan rate, 20 mV s-1 or 60 mV s-1.
Resumo:
The adsorption capacity of alpha-chitosan and its modified form with succinic anhydride was compared with the traditional adsorbent active carbon by using the dye methylene blue, employed in the textile industry. The isotherms for both biopolymers were classified as SSA systems in the Giles model, more specifically in L class and subgroup 3. The dye concentration in the supernatant in the adsorption assay was determined through electronic spectroscopy. By calorimetric titration thermodynamic data of the interaction between methyene blue and the chemically modified chitosan at the solid/liquid interface were obtained. The enthalpy of the dye/chitosan interaction gave 2.47 ± 0.02 kJ mol-1 with an equilibrium constant of 7350 ± 10 and for the carbon/dye interaction this constant gave 5951 ± 8. The spontaneity of these adsorptions are reflected by the free Gibbs energies of -22.1 ± 0.4 and -21.5 ± 0.2 kJ mol-1, respectively, found for these systems. This new adsorbent derived from a natural polysaccharide is as efficient as activated carbon. However 97% of the bonded dye can be eluted by sodium chloride solution, while this same operation elutes only 42% from carbon. Chitosan is efficient in dye removal with the additional advantage of being cheap, non-toxic, biocompatible and biodegradable.