3 resultados para cast films

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of spraying procedures to fabricate layer-by-layer (LbL) films has brought new possibilities for the control of molecular architectures and for making the LbL technique compliant with industrial processes. In this study we show that significantly distinct architectures are produced for dipping and spray-LbL films of the same components, which included DODAB/DPPG vesicles. The films differed notably in their thickness and stratified nature. The electrical response of the two types of films to aqueous solutions containing erythrosin was also different. With multidimensional projections we showed that the impedance for the DODAB/DPPG spray-LbL film is more sensitive to changes in concentration, being therefore more promising as sensing units. Furthermore, with surface-enhanced Raman scattering (SERS) we could ascribe the high sensitivity of the LbL films to adsorption of erythrosin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Split-plot design (SPD) and near-infrared chemical imaging were used to study the homogeneity of the drug paracetamol loaded in films and prepared from mixtures of the biocompatible polymers hydroxypropyl methylcellulose, polyvinylpyrrolidone, and polyethyleneglycol. The study was split into two parts: a partial least-squares (PLS) model was developed for a pixel-to-pixel quantification of the drug loaded into films. Afterwards, a SPD was developed to study the influence of the polymeric composition of films and the two process conditions related to their preparation (percentage of the drug in the formulations and curing temperature) on the homogeneity of the drug dispersed in the polymeric matrix. Chemical images of each formulation of the SPD were obtained by pixel-to-pixel predictions of the drug using the PLS model of the first part, and macropixel analyses were performed for each image to obtain the y-responses (homogeneity parameter). The design was modeled using PLS regression, allowing only the most relevant factors to remain in the final model. The interpretation of the SPD was enhanced by utilizing the orthogonal PLS algorithm, where the y-orthogonal variations in the design were separated from the y-correlated variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A proper cast is essential for a successful rehabilitation with implant prostheses, in order to produce better structures and induce less strain on the implants. The aim of this study was to evaluate the precision of four different mold filling techniques and verify an accurate methodology to evaluate these techniques. A total of 40 casts were obtained from a metallic matrix simulating three unit implant-retained prostheses. The molds were filled using four different techniques in four groups (n = 10): Group 1 - Single-portion filling technique; Group 2 - Two-step filling technique; Group 3 - Latex cylinder technique; Group 4 - Joining the implant analogs previously to the mold filling. A titanium framework was obtained and used as a reference to evaluate the marginal misfit and tension forces in each cast. Vertical misfit was measured with an optical microscope with an increase of 120 times following the single-screw test protocol. Strain was quantified using strain gauges. Data were analyzed using one-way ANOVA (Tukey's test) (α =0.05). The correlation between strain and vertical misfit was evaluated by Pearson test. The misfit values did not present statistical difference (P = 0.979), while the strain results showed statistical difference between Groups 3 and 4 (P = 0.027). The splinting technique was considered to be as efficient as the conventional technique. The strain gauge methodology was accurate for strain measurements and cast distortion evaluation. There was no correlation between strain and marginal misfit.