7 resultados para broncho-alveolar lavage fluids

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of screening techniques, such as an alternative light source (ALS), is important for finding biological evidence at a crime scene. The objective of this study was to evaluate whether biological fluid (blood, semen, saliva, and urine) deposited on different surfaces changes as a function of the age of the sample. Stains were illuminated with a Megamaxx™ ALS System and photographed with a Canon EOS Utility™ camera. Adobe Photoshop™ was utilized to prepare photographs for analysis, and then ImageJ™ was used to record the brightness values of pixels in the images. Data were submitted to analysis of variance using a generalized linear mixed model with two fixed effects (surface and fluid). Time was treated as a random effect (through repeated measures) with a first-order autoregressive covariance structure. Means of significant effects were compared by the Tukey test. The fluorescence of the analyzed biological material varied depending on the age of the sample. Fluorescence was lower when the samples were moist. Fluorescence remained constant when the sample was dry, up to the maximum period analyzed (60 days), independent of the substrate on which the fluid was deposited, showing the novelty of this study. Therefore, the forensic expert can detect biological fluids at the crime scene using an ALS even several days after a crime has occurred.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mesoporous SBA-15 silica with uniform hexagonal pore, narrow pore size distribution and tuneable pore diameter was organofunctionalized with glutaraldehyde-bridged silylating agent. The precursor and its derivative silicas were ibuprofen-loaded for controlled delivery in simulated biological fluids. The synthesized silicas were characterized by elemental analysis, infrared spectroscopy, (13)C and (29)Si solid state NMR spectroscopy, nitrogen adsorption, X-ray diffractometry, thermogravimetry and scanning electron microscopy. Surface functionalization with amine containing bridged hydrophobic structure resulted in significantly decreased surface area from 802.4 to 63.0 m(2) g(-1) and pore diameter 8.0-6.0 nm, which ultimately increased the drug-loading capacity from 18.0% up to 28.3% and a very slow release rate of ibuprofen over the period of 72.5h. The in vitro drug release demonstrated that SBA-15 presented the fastest release from 25% to 27% and SBA-15GA gave near 10% of drug release in all fluids during 72.5 h. The Korsmeyer-Peppas model better fits the release data with the Fickian diffusion mechanism and zero order kinetics for synthesized mesoporous silicas. Both pore sizes and hydrophobicity influenced the rate of the release process, indicating that the chemically modified silica can be suggested to design formulation of slow and constant release over a defined period, to avoid repeated administration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study proposed to evaluate the mandibular biomechanics in the posterior dentition based on experimental and computational analyses. The analyses were performed on a model of human mandible, which was modeled by epoxy resin for photoelastic analysis and by computer-aided design for finite element analysis. To standardize the evaluation, specific areas were determined at the lateral surface of mandibular body. The photoelastic analysis was configured through a vertical load on the first upper molar and fixed support at the ramus of mandible. The same configuration was used in the computer simulation. Force magnitudes of 50, 100, 150, and 200 N were applied to evaluate the bone stress. The stress results presented similar distribution in both analyses, with the more intense stress being at retromolar area and oblique line and alveolar process at molar level. This study presented the similarity of results in the experimental and computational analyses and, thus, showed the high importance of morphology biomechanical characterization at posterior dentition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The practice of burning sugarcane obtained by non-mechanized harvesting exposes workers and the people of neighboring towns to high concentrations of particulate matter (PM) that is harmful to health, and may trigger a series of cardiorespiratory diseases. The aim of this study was to analyze the chemical composition of the micro-particles coming from sugarcane burning residues and to verify the effects of this micro-particulate matter on lung and tracheal tissues. Micro-particulate matter (PM10) was obtained by dissolving filter paper containing burnt residues in NaCl solution. This material was instilled into the Wistar rats' nostrils. Histological analyses (hematoxylin and eosin - HE) of cardiac, lung and tracheal tissues were performed. Inflammatory mediators were measured in lung tissues by using ELISA. The chemical composition of the particulate material revealed a large quantity of the phthalic acid ester, high concentrations of phenolic compounds, anthracene and polycyclic aromatic hydrocarbons (PAH). Histological analysis showed a reduction in subjacent conjunctive tissue in the trachea, lung inflammation with inflammatory infiltrate formation and reduction of alveolar spaces and a significant increase (p<0.05) in the release of IL-1α, IL-1β, IL-6, and INF-γ in the group treated with PM10 when compared to the control group. We concluded that the burning sugarcane residues release many particles, which have toxic chemical compounds. The micro-particulate matter can induce alterations in the respiratory system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inflation pressure of the endotracheal tube cuff can cause ischemia of the tracheal mucosa at high pressures; thus, it can cause important tracheal morbidity and tracheal microaspiration of the oropharyngeal secretion, or it can even cause pneumonia associated with mechanical ventilation if the pressure of the cuff is insufficient. In order to investigate the effectiveness of the RUSCH® 7.5 mm endotracheal tube cuff, this study was designed to investigate the physical and mechanical aspects of the cuff in contact with the trachea. For this end, we developed an in vitro experimental model to assess the flow of dye (methylene blue) by the inflated cuff on the wall of the artificial material. We also designed an in vivo study with 12 Large White pigs under endotracheal intubation. We instilled the same dye in the oral cavity of the animals, and we analyzed the presence or not of leakage in the trachea after the region of the cuff after their deaths (animal sacrifice). All cuffs were inflated at the pressure of 30 cmH2O. We observed the passage of fluids through the cuff in all in vitro and in vivo experimental models. We conclude that, as well as several other cuff models in the literature, the RUSCH® 7.5 mm tube cuffs are also not able to completely seal the trachea and thus prevent aspiration of oropharyngeal secretions. Other prevention measures should be taken.