4 resultados para branching morphogenesis
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
The unusual development of branches along the stem of Euterpe edulis is described for the first time. Branches originated at 2 to 190 cm from the ground. Ramified individuals and branches were able to produce reproductive structures and some branches produced roots. A plausible cause for the observed anomaly could be genetic problems due to small population sizes. The better agreement of this process can have a positive effect in the harvest of the heart of palm through the artificial induction of sprouts, what would prevent the death of the individual.
Resumo:
The cranial base, composed of the midline and lateral basicranium, is a structurally important region of the skull associated with several key traits, which has been extensively studied in anthropology and primatology. In particular, most studies have focused on the association between midline cranial base flexion and relative brain size, or encephalization. However, variation in lateral basicranial morphology has been studied less thoroughly. Platyrrhines are a group of primates that experienced a major evolutionary radiation accompanied by extensive morphological diversification in Central and South America over a large temporal scale. Previous studies have also suggested that they underwent several evolutionarily independent processes of encephalization. Given these characteristics, platyrrhines present an excellent opportunity to study, on a large phylogenetic scale, the morphological correlates of primate diversification in brain size. In this study we explore the pattern of variation in basicranial morphology and its relationship with phylogenetic branching and with encephalization in platyrrhines. We quantify variation in the 3D shape of the midline and lateral basicranium and endocranial volumes in a large sample of platyrrhine species, employing high-resolution CT-scans and geometric morphometric techniques. We investigate the relationship between basicranial shape and encephalization using phylogenetic regression methods and calculate a measure of phylogenetic signal in the datasets. The results showed that phylogenetic structure is the most important dimension for understanding platyrrhine cranial base diversification; only Aotus species do not show concordance with our molecular phylogeny. Encephalization was only correlated with midline basicranial flexion, and species that exhibit convergence in their relative brain size do not display convergence in lateral basicranial shape. The evolution of basicranial variation in primates is probably more complex than previously believed, and understanding it will require further studies exploring the complex interactions between encephalization, brain shape, cranial base morphology, and ecological dimensions acting along the species divergence process.
Resumo:
There is a growing demand for renewable energy, and sugarcane is a promising bioenergy crop. In Brazil, the largest sugarcane producer in the world, sugarcane plantations are expanding into areas where severe droughts are common. Recent evidence has highlighted the role of miRNAs in regulating drought responses in several species, including sugarcane. This review summarizes the data from miRNA expression profiles observed in a wide array of experimental conditions using different sugarcane cultivars that differ in their tolerance to drought. We uncovered a complex regulation of sugarcane miRNAs in response to drought and discussed these data with the miRNA profiles observed in other plant species. The predicted miRNA targets revealed different transcription factors, proteins involved in tolerance to oxidative stress, cell modification, as well as hormone signaling. Some of these proteins might regulate sugarcane responses to drought, such as reduction of internode growth and shoot branching and increased leaf senescence. A better understanding on the regulatory network from miRNAs and their targets under drought stress has a great potential to contribute to sugarcane improvement, either as molecular markers as well as by using biotechnological approaches.
Resumo:
This study describes the sperm morphology of the mayfly Hexagenia (Pseudeatonica) albivitta (Ephemeroptera). Its spermatozoon measures approximately 30 μm of which 9 μm corresponds to the head. The head is composed of an approximately round acrosomal vesicle and a cylindrical nucleus. The nucleus has two concavities, one in the anterior tip, where the acrosomal vesicle is inserted and a deeper one at its base, where the flagellum components are inserted. The flagellum is composed of an axoneme, a mitochondrion and a dense rod adjacent to the mitochondrion. A centriolar adjunct is also observed surrounding the axoneme in the initial portion of the flagellum and extends along the flagellum for at least 2 μm, surrounding the axoneme in a half-moon shape. The axoneme is the longest component of the flagellum, and it follows the 9+9+0 pattern, with no central pair of microtubules. At the posterior region of the flagellum, the mitochondrion has a dumb-bell shape in cross sections that, together with the rectangular mitochondrial-associated rod, is responsible for the flattened shape of the flagellum. An internal membrane is observed surrounding both mitochondrion and its associated structure.