20 resultados para automated harvest
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
37
Resumo:
PURPOSE: To evaluate the sensitivity and specificity of machine learning classifiers (MLCs) for glaucoma diagnosis using Spectral Domain OCT (SD-OCT) and standard automated perimetry (SAP). METHODS: Observational cross-sectional study. Sixty two glaucoma patients and 48 healthy individuals were included. All patients underwent a complete ophthalmologic examination, achromatic standard automated perimetry (SAP) and retinal nerve fiber layer (RNFL) imaging with SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec Inc., Dublin, California). Receiver operating characteristic (ROC) curves were obtained for all SD-OCT parameters and global indices of SAP. Subsequently, the following MLCs were tested using parameters from the SD-OCT and SAP: Bagging (BAG), Naive-Bayes (NB), Multilayer Perceptron (MLP), Radial Basis Function (RBF), Random Forest (RAN), Ensemble Selection (ENS), Classification Tree (CTREE), Ada Boost M1(ADA),Support Vector Machine Linear (SVML) and Support Vector Machine Gaussian (SVMG). Areas under the receiver operating characteristic curves (aROC) obtained for isolated SAP and OCT parameters were compared with MLCs using OCT+SAP data. RESULTS: Combining OCT and SAP data, MLCs' aROCs varied from 0.777(CTREE) to 0.946 (RAN).The best OCT+SAP aROC obtained with RAN (0.946) was significantly larger the best single OCT parameter (p<0.05), but was not significantly different from the aROC obtained with the best single SAP parameter (p=0.19). CONCLUSION: Machine learning classifiers trained on OCT and SAP data can successfully discriminate between healthy and glaucomatous eyes. The combination of OCT and SAP measurements improved the diagnostic accuracy compared with OCT data alone.
Resumo:
Diabetic Retinopathy (DR) is a complication of diabetes that can lead to blindness if not readily discovered. Automated screening algorithms have the potential to improve identification of patients who need further medical attention. However, the identification of lesions must be accurate to be useful for clinical application. The bag-of-visual-words (BoVW) algorithm employs a maximum-margin classifier in a flexible framework that is able to detect the most common DR-related lesions such as microaneurysms, cotton-wool spots and hard exudates. BoVW allows to bypass the need for pre- and post-processing of the retinographic images, as well as the need of specific ad hoc techniques for identification of each type of lesion. An extensive evaluation of the BoVW model, using three large retinograph datasets (DR1, DR2 and Messidor) with different resolution and collected by different healthcare personnel, was performed. The results demonstrate that the BoVW classification approach can identify different lesions within an image without having to utilize different algorithms for each lesion reducing processing time and providing a more flexible diagnostic system. Our BoVW scheme is based on sparse low-level feature detection with a Speeded-Up Robust Features (SURF) local descriptor, and mid-level features based on semi-soft coding with max pooling. The best BoVW representation for retinal image classification was an area under the receiver operating characteristic curve (AUC-ROC) of 97.8% (exudates) and 93.5% (red lesions), applying a cross-dataset validation protocol. To assess the accuracy for detecting cases that require referral within one year, the sparse extraction technique associated with semi-soft coding and max pooling obtained an AUC of 94.2 ± 2.0%, outperforming current methods. Those results indicate that, for retinal image classification tasks in clinical practice, BoVW is equal and, in some instances, surpasses results obtained using dense detection (widely believed to be the best choice in many vision problems) for the low-level descriptors.
Resumo:
To evaluate associations between polymorphisms of the N-acetyltransferase 2 (NAT2), human 8-oxoguanine glycosylase 1 (hOGG1) and X-ray repair cross-complementing protein 1 (XRCC1) genes and risk of upper aerodigestive tract (UADT) cancer. A case-control study involving 117 cases and 224 controls was undertaken. The NAT2 gene polymorphisms were genotyped by automated sequencing and XRCC1 Arg399Gln and hOGG1 Ser326Cys polymorphisms were determined by Polymerase Chain Reaction followed by Restriction Fragment Length Polymorphism (PCR-RFLP) methods. Slow metabolization phenotype was significantly associated as a risk factor for the development of UADT cancer (p=0.038). Furthermore, haplotype of slow metabolization was also associated with UADT cancer (p=0.014). The hOGG1 Ser326Cys polymorphism (CG or GG vs. CC genotypes) was shown as a protective factor against UADT cancer in moderate smokers (p=0.031). The XRCC1 Arg399Gln polymorphism (GA or AA vs. GG genotypes), in turn, was a protective factor against UADT cancer only among never-drinkers (p=0.048). Interactions involving NAT2, XRCC1 Arg399Gln and hOGG1 Ser326Cys polymorphisms may modulate the risk of UADT cancer in this population.
Resumo:
The aim was to describe the outcome of neonatal hearing screening (NHS) and audiological diagnosis in neonates in the NICU. The sample was divided into Group I: neonates who underwent NHS in one step and Group II: neonates who underwent a test and retest NHS. NHS procedure was automated auditory brainstem response. NHS was performed in 82.1% of surviving neonates. For GI, referral rate was 18.6% and false-positive was 62.2% (normal hearing in the diagnostic stage). In GII, with retest, referral rate dropped to 4.1% and false-positive to 12.5%. Sensorineural hearing loss was found in 13.2% of infants and conductive in 26.4% of cases. There was one case of auditory neuropathy spectrum (1.9%). Dropout rate in whole process was 21.7% for GI and 24.03% for GII. We concluded that it was not possible to perform universal NHS in the studied sample or, in many cases, to apply it within the first month of life. Retest reduced failure and false-positive rate and did not increase evasion, indicating that it is a recommendable step in NHS programs in the NICU. The incidence of hearing loss was 2.9%, considering sensorineural hearing loss (0.91%), conductive (1.83%) and auditory neuropathy spectrum (0.19%).
Resumo:
The aim of this study was to develop a methodology using Raman hyperspectral imaging and chemometric methods for identification of pre- and post-blast explosive residues on banknote surfaces. The explosives studied were of military, commercial and propellant uses. After the acquisition of the hyperspectral imaging, independent component analysis (ICA) was applied to extract the pure spectra and the distribution of the corresponding image constituents. The performance of the methodology was evaluated by the explained variance and the lack of fit of the models, by comparing the ICA recovered spectra with the reference spectra using correlation coefficients and by the presence of rotational ambiguity in the ICA solutions. The methodology was applied to forensic samples to solve an automated teller machine explosion case. Independent component analysis proved to be a suitable method of resolving curves, achieving equivalent performance with the multivariate curve resolution with alternating least squares (MCR-ALS) method. At low concentrations, MCR-ALS presents some limitations, as it did not provide the correct solution. The detection limit of the methodology presented in this study was 50μgcm(-2).
Resumo:
Ammonium nitrate fuel oil (ANFO) is an explosive used in many civil applications. In Brazil, ANFO has unfortunately also been used in criminal attacks, mainly in automated teller machine (ATM) explosions. In this paper, we describe a detailed characterization of the ANFO composition and its two main constituents (diesel and a nitrate explosive) using high resolution and accuracy mass spectrometry performed on an FT-ICR-mass spectrometer with electrospray ionization (ESI(±)-FTMS) in both the positive and negative ion modes. Via ESI(-)-MS, an ion marker for ANFO was characterized. Using a direct and simple ambient desorption/ionization technique, i.e., easy ambient sonic-spray ionization mass spectrometry (EASI-MS), in a simpler, lower accuracy but robust single quadrupole mass spectrometer, the ANFO ion marker was directly detected from the surface of banknotes collected from ATM explosion theft.
Resumo:
The post harvest cooling and/or freezing processes for horticultural products have been carried out with the objective of removing the heat from these products, allowing them a bigger period of conservation. Therefore, the knowledge of the physical properties that involve heat transference in the fig fruit Roxo de Valinhos is useful for calculating projects and systems of food engineering in general, as well as, for using in equations of thermodynamic mathematical models. The values of conductivity and thermal diffusivity of the whole fig fruit-rami index were determined, and from these values it was determined the value of the specific heat. For these determination it was used the transient method of the Line Heat Source. The results shown that the fig fruit has a thermal conductivity of 0.52 W m-1°C, thermal diffusivity of 1.56 x 10-7 m² s-1, pulp density of 815.6 kg m-3 and specific heat of 4.07 kJ kg-1 °C.
Resumo:
In the last few years the sugar-cane mechanical harvested area has increased, especially in regions with appropriated slop. The use of this technology brings some inconveniences, such as, the increase in the percentage of extraneous matter, which causes the reduction of technological quality of the raw material, and losses in the field. Extraneous matter (trash) is composed of tops and leaves in major percentage, plus soil and roots, and eventually some metal parts. In the green cane harvest system the percentage of extraneous matter has a tendency to increase due to the great amount of vegetal matter to be processed. The increase in the blower fan speed to reduce the amount of extraneous matter can lead to an unacceptable economic level of raw material losses. The main objective of this work was, using a cane loss monitor, to evaluate and quantify the amount of visible losses of sugar cane through the primary extractor at two different fan speeds. Afterwards these losses were related to the harvester cleaning efficiency. The piezoelectric transducer shows a reasonable sensibility. The results show that the cleaning efficiency in the primary extractor (85% mean), the cane losses (between 5.68% and 2.15%) and fan speed are interrelated. The total losses and specially splinters (between 3.19% and 0.91%), showed a significant difference among the treatments.
Resumo:
The covering of the soil is an agricultural practice that intends to control the harmful herbs, to reduce the losses of water by evaporation of the soil, and to facilitate the harvest and the commercialization, once the product is cleaner and healthier. However, when the soil is covered important microclimatic parameters are also altered, and consequently the germination of seeds, the growth of roots, the absorption of water and nutrients, the metabolic activity of the plants and the carbohydrates storage. The current trial intended to evaluate the effect of soil covering with blue colored film on consumptive water-use in a lettuce crop (Lactuca sativa, L.). The experiment was carried out in a plastic greenhouse in Araras - São Paulo State, Brazil from March 3rd, 2001 to May 5th, 2001. The consumptive water-use was measured through two weighing lysimeter installed inside the greenhouse. Crop spacing was 0.25 m x 0.25 m and the color of the film above soil was blue. Leaf area index (IAF), was measured six times (7; 14; 21; 28; 35; 40 days after transplant) and the water-use efficiency (EU) was measured at the end. The experimental design was subdivided portions with two treatments, bare soil and covered soil. The average consumptive water-use was 4.17 mm day-1 to the bare soil treatment and 3.11 mm day-1 to the covered soil treatment. The final leaf area index was 25.23 to the bare soil treatment and 24.39 to the covered soil treatment, and there was no statistical difference between then.
Resumo:
Fresh tomato harvest is traditionally made without harvesting aids. The main goal of this research was to evaluate performance parameters of fresh tomato harvesting aid equipment and compare it to traditional harvest, in the state of São Paulo. Therefore, an equipment was developed and the harvest process was evaluated in four different ways: traditional system (harvest system used in Santa Luzia farm, Brotas, SP, Brazil), picker walking with a harvesting aid equipment, picker seated in a harvesting aid equipment and a composition of both systems: two pickers seated and one picker walking in two different velocities ranges. The different systems using harvesting aid showed an average yield by picker more efficient than reference. Harvest system using three pickers showed an increase of 290% on yield average by picker, on the range of 0.5-1.0 fruit per plant, followed by the systems with a walking picker, that increased productivity in 41%, and picker seated harvester, that showed an increase of 35%. These results demonstrate the importance of using a harvesting aid equipment.
Resumo:
Quality evaluation of classification was done in two fresh market tomatoes packing house, using electronically and mechanical equipments in two harvest periods, summer and winter seasons. The main goal of this work was to evaluate size and color grading conformity with the standards proposed by the Brazilian Program for Horticulture Modernization and size grading obtainded with the one established by the packer. The cultivar studied was Carmen. The results showed that there was no grade conformity with the fresh tomato quality standards proposed by the Brazilian Program for Horticulture Modernization. The grade conformity obtained when compared with the one programmed by the packer, was only for large sizes, in both equipments. The electronically equipment has presented better performance, over the mechanical, considering grading quality and fruits post-harvest quality. However, the electronically equipment must be constantly monitored to achieve efficiency and investment return. On the other side, for mechanical equipment it will be necessary to review the actual system of size grading, in order to follow the fresh tomato quality standards.
Resumo:
One of the problems found in mechanical harvest of sugar cane is the lack of synchronism between the harvest machine and the infield wagon, causing crop losses as well as operational capacity. The objective of the present research was to design a system capable of helping to synchronize the sugar cane harvest machine with the wagon. The communication between tractor and harvest machine is wireless. Two ultrasound sensors coupled to the elevator and a microprocessor manage such information, generating a correct synchronization among the machines. The system was tested in laboratory and on field performing its function adequately, maintaining the two machines in synchronization, indicating and alerting the operators their relative positions. The developed system reduced the sugar cane lost in 60 kg ha-1 comparing to the harvest with the system turned off.
Resumo:
Tomatoes are one of the most important vegetable crops grown in Brazil and are among the crops that have one of the highest post-harvest losses indexes in the country. The present work aimed at evaluating impact damage observed in packing lines of fresh tomatoes as well as to determine, under laboratory conditions, quality alterations of tomato fruits submitted to impact damage in different surface types. Critical points evaluation was accomplished using an instrumented sphere. Critical transference points found showed variations in acceleration levels from 30 to 129 G (m s-2). Tests carried out under laboratory conditions showed that padded surfaces reduced up to 31% impact damage. Incidence of severe internal physical damage was evaluated by a subjective scale and increased by 79% on hard surfaces for the highest fall drop. On the other hand, it was observed an effective reduction in physical damage on fruits when padded surfaces were used. When a 10-cm drop was performed, the maximum reduction measured was 10% for hard surfaces and 5% for previously padded surfaces. For quality parameters, it was observed for high drops on hard surfaces, highest values for weight loss, total acidity, lower values for vitamin C and Soluble Solids.
Resumo:
Excessive and inadequate handling of fruits and vegetables provides high incidences of physical damage, consequently, post harvest losses. The main goal of this work was to evaluate the impact magnitude in persimmon packing lines, Rama Forte, and to determine, at the laboratory, its impact limits. For evaluating the critical points it was used an instrumented sphere of 76 mm of diameter (Technmark, Inc, Lansing, USA), which registered the impact magnitude in seven distinctive impact lines located in four packing houses. For determining physical damages, tests were carried out at the laboratory, where fruit drop was related to impact magnitude, physical damage incidence and fruit post harvest losses. At the packing lines, the values found varied from 21 to 87 G on the transfer points and the majority of registered impacts (over 94%) were down 50G. Drops from 20 cm caused an increase in weight losses after six days of storage at room temperature. Drops from 20 and 30 cm caused skin darkness (low L values), associated to a decrease in color intensity (chroma). Impact drop did not affect pulp fruit chemical features.