8 resultados para antiviral-relevant genes
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Xanthomonas citri subsp. citri (X. citri) is the causative agent of the citrus canker, a disease that affects several citrus plants in Brazil and across the world. Although many studies have demonstrated the importance of genes for infection and pathogenesis in this bacterium, there are no data related to phosphate uptake and assimilation pathways. To identify the proteins that are involved in the phosphate response, we performed a proteomic analysis of X. citri extracts after growth in three culture media with different phosphate concentrations. Using mass spectrometry and bioinformatics analysis, we showed that X. citri conserved orthologous genes from Pho regulon in Escherichia coli, including the two-component system PhoR/PhoB, ATP binding cassette (ABC transporter) Pst for phosphate uptake, and the alkaline phosphatase PhoA. Analysis performed under phosphate starvation provided evidence of the relevance of the Pst system for phosphate uptake, as well as both periplasmic binding proteins, PhoX and PstS, which were formed in high abundance. The results from this study are the first evidence of the Pho regulon activation in X. citri and bring new insights for studies related to the bacterial metabolism and physiology. Biological significance Using proteomics and bioinformatics analysis we showed for the first time that the phytopathogenic bacterium X. citri conserves a set of proteins that belong to the Pho regulon, which are induced during phosphate starvation. The most relevant in terms of conservation and up-regulation were the periplasmic-binding proteins PstS and PhoX from the ABC transporter PstSBAC for phosphate, the two-component system composed by PhoR/PhoB and the alkaline phosphatase PhoA.
Resumo:
Current guidelines have advised against the performance of (131)I-iodide diagnostic whole body scintigraphy (dxWBS) to minimize the occurrence of stunning, and to guarantee the efficiency of radioiodine therapy (RIT). The aim of the study was to evaluate the impact of stunning on the efficacy of RIT and disease outcome. This retrospective analysis included 208 patients with differentiated thyroid cancer managed according to a same protocol and followed up for 12-159 months (mean 30 ± 69 months). Patients received RIT in doses ranging from 3,700 to 11,100 MBq (100 mCi to 300 mCi). Post-RIT-whole body scintigraphy images were performed 10 days after RIT in all patients. In addition, images were also performed 24-48 hours after therapy in 22 patients. Outcome was classified as no evidence of disease (NED), stable disease (SD) and progressive disease (PD). Thyroid stunning occurred in 40 patients (19.2%), including 26 patients with NED and 14 patients with SD. A multivariate analysis showed no association between disease outcome and the occurrence of stunning (p = 0.3476). The efficacy of RIT and disease outcome do not seem to be related to thyroid stunning.
Resumo:
Lutein (LT) is a carotenoid obtained by diet and despite its antioxidant activity had been biochemically reported, few studies are available concerning its influence on the expression of antioxidant genes. The expression of 84 genes implicated in antioxidant defense was quantified using quantitative reverse transcription polymerase chain reaction array. DNA damage was measured by comet assay and glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) were quantified as biochemical parameters of oxidative stress in mouse kidney and liver. cDDP treatment reduced concentration of GSH and increased TBARS, parameters that were ameliorated in treatment associated with LT. cDDP altered the expression of 32 genes, increasing the expression of GPx2, APC, Nqo1 and CCs. LT changed the expression of 37 genes with an induction of 13 mainly oxygen transporters. In treatments associating cDDP and LT, 30 genes had their expression changed with a increase of the same genes of the cDDP treatment alone. These results suggest that LT might act scavenging reactive species and also inducing the expression of genes related to a better antioxidant response, highlighting the improvement of oxygen transport. This improved redox state of the cell through LT treatment could be related to the antigenotoxic and antioxidant effects observed.
Resumo:
Differential gene expression analysis by suppression subtractive hybridization with correlation to the metabolic pathways involved in chronic myeloid leukemia (CML) may provide a new insight into the pathogenesis of CML. Among the overexpressed genes found in CML at diagnosis are SEPT5, RUNX1, MIER1, KPNA6 and FLT3, while PAN3, TOB1 and ITCH were decreased when compared to healthy volunteers. Some genes were identified and involved in CML for the first time, including TOB1, which showed a low expression in patients with CML during tyrosine kinase inhibitor treatment with no complete cytogenetic response. In agreement, reduced expression of TOB1 was also observed in resistant patients with CML compared to responsive patients. This might be related to the deregulation of apoptosis and the signaling pathway leading to resistance. Most of the identified genes were related to the regulation of nuclear factor κB (NF-κB), AKT, interferon and interleukin-4 (IL-4) in healthy cells. The results of this study combined with literature data show specific gene pathways that might be explored as markers to assess the evolution and prognosis of CML as well as identify new therapeutic targets.
Resumo:
The genera Cochliomyia and Chrysomya contain both obligate and saprophagous flies, which allows the comparison of different feeding habits between closely related species. Among the different strategies for comparing these habits is the use of qPCR to investigate the expression levels of candidate genes involved in feeding behavior. To ensure an accurate measure of the levels of gene expression, it is necessary to normalize the amount of the target gene with the amount of a reference gene having a stable expression across the compared species. Since there is no universal gene that can be used as a reference in functional studies, candidate genes for qPCR data normalization were selected and validated in three Calliphoridae (Diptera) species, Cochliomyia hominivorax Coquerel, Cochliomyia macellaria Fabricius, and Chrysomya albiceps Wiedemann . The expression stability of six genes ( Actin, Gapdh, Rp49, Rps17, α -tubulin, and GstD1) was evaluated among species within the same life stage and between life stages within each species. The expression levels of Actin, Gapdh, and Rp49 were the most stable among the selected genes. These genes can be used as reliable reference genes for functional studies in Calliphoridae using similar experimental settings.
Resumo:
The role of key cell cycle regulation genes such as, CDKN1B, CDKN2A, CDKN2B, and CDKN2C in sporadic medullary thyroid carcinoma (s-MTC) is still largely unknown. In order to evaluate the influence of inherited polymorphisms of these genes on the pathogenesis of s-MTC, we used TaqMan SNP genotyping to examine 45 s-MTC patients carefully matched with 98 controls. A multivariate logistic regression analysis demonstrated that CDKN1B and CDKN2A genes were related to s-MTC susceptibility. The rs2066827*GT+GG CDKN1B genotype was more frequent in s-MTC patients (62.22%) than in controls (40.21%), increasing the susceptibility to s-MTC (OR=2.47; 95% CI=1.048-5.833; P=0.038). By contrast, the rs11515*CG+GG of CDKN2A gene was more frequent in the controls (32.65%) than in patients (15.56%), reducing the risk for s-MTC (OR=0.174; 95% CI=0.048-0.627; P=0.0075). A stepwise regression analysis indicated that two genotypes together could explain 11% of the total s-MTC risk. In addition, a relationship was found between disease progression and the presence of alterations in the CDKN1A (rs1801270), CDKN2C (rs12885), and CDKN2B (rs1063192) genes. WT rs1801270 CDKN1A patients presented extrathyroidal tumor extension more frequently (92%) than polymorphic CDKN1A rs1801270 patients (50%; P=0.0376). Patients with the WT CDKN2C gene (rs12885) presented larger tumors (2.9±1.8 cm) than polymorphic patients (1.5±0.7 cm; P=0.0324). On the other hand, patients with the polymorphic CDKN2B gene (rs1063192) presented distant metastases (36.3%; P=0.0261). In summary, we demonstrated that CDKN1B and CDKN2A genes are associated with susceptibility, whereas the inherited genetic profile of CDKN1A, CDKN2B, and CDKN2C is associated with aggressive features of tumors. This study suggests that profiling cell cycle genes may help define the risk and characterize s-MTC aggressiveness.
Resumo:
A fosmid metagenomic library was constructed with total community DNA obtained from a municipal wastewater treatment plant (MWWTP), with the aim of identifying new FeFe-hydrogenase genes encoding the enzymes most important for hydrogen metabolism. The dataset generated by pyrosequencing of a fosmid library was mined to identify environmental gene tags (EGTs) assigned to FeFe-hydrogenase. The majority of EGTs representing FeFe-hydrogenase genes were affiliated with the class Clostridia, suggesting that this group is the main hydrogen producer in the MWWTP analyzed. Based on assembled sequences, three FeFe-hydrogenase genes were predicted based on detection of the L2 motif (MPCxxKxxE) in the encoded gene product, confirming true FeFe-hydrogenase sequences. These sequences were used to design specific primers to detect fosmids encoding FeFe-hydrogenase genes predicted from the dataset. Three identified fosmids were completely sequenced. The cloned genomic fragments within these fosmids are closely related to members of the Spirochaetaceae, Bacteroidales and Firmicutes, and their FeFe-hydrogenase sequences are characterized by the structure type M3, which is common to clostridial enzymes. FeFe-hydrogenase sequences found in this study represent hitherto undetected sequences, indicating the high genetic diversity regarding these enzymes in MWWTP. Results suggest that MWWTP have to be considered as reservoirs for new FeFe-hydrogenase genes.
Resumo:
OBJECTIVE: To screen for mutations in AMH and AMHR2 genes in patients with persistent Müllerian duct syndrome (PMDS). PATIENTS AND METHOD: Genomic DNA of eight patients with PMDS was obtained from peripheral blood leukocytes. Directed sequencing of the coding regions and the exon-intron boundaries of AMH and AMHR2 were performed. RESULTS: The AMH mutations p.Arg95*, p.Arg123Trp, c.556-2A>G, and p.Arg502Leu were identified in five patients; and p.Gly323Ser and p.Arg407* in AMHR2 of two individuals. In silico analyses of the novel c.556-2A>G, p.Arg502Leu and p.Arg407* mutations predicted that they were harmful and were possible causes of the disease. CONCLUSION: A likely molecular etiology was found in the eight evaluated patients with PMDS. Four mutations in AMH and two in AMHR2 were identified. Three of them are novel mutations, c.556-2A>G, and p.Arg502Leu in AMH; and p.Gly323Ser in AMHR2. Arq Bras Endocrinol Metab. 2012;56(8):473-8