6 resultados para ammonium phosphates

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The introduction of spraying procedures to fabricate layer-by-layer (LbL) films has brought new possibilities for the control of molecular architectures and for making the LbL technique compliant with industrial processes. In this study we show that significantly distinct architectures are produced for dipping and spray-LbL films of the same components, which included DODAB/DPPG vesicles. The films differed notably in their thickness and stratified nature. The electrical response of the two types of films to aqueous solutions containing erythrosin was also different. With multidimensional projections we showed that the impedance for the DODAB/DPPG spray-LbL film is more sensitive to changes in concentration, being therefore more promising as sensing units. Furthermore, with surface-enhanced Raman scattering (SERS) we could ascribe the high sensitivity of the LbL films to adsorption of erythrosin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a desorption/ionization technique, easy ambient sonic-spray ionization coupled to mass spectrometry (EASI-MS), documents related to the 2nd generation of Brazilian Real currency (R$) were screened in the positive ion mode for authenticity based on chemical profiles obtained directly from the banknote surface. Characteristic profiles were observed for authentic, seized suspect counterfeit and counterfeited homemade banknotes from inkjet and laserjet printers. The chemicals in the authentic banknotes' surface were detected via a few minor sets of ions, namely from the plasticizers bis(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP), most likely related to the official offset printing process, and other common quaternary ammonium cations, presenting a similar chemical profile to 1st-generation R$. The seized suspect counterfeit banknotes, however, displayed abundant diagnostic ions in the m/z 400-800 range due to the presence of oligomers. High-accuracy FT-ICR MS analysis enabled molecular formula assignment for each ion. The ions were separated by 44 m/z, which enabled their characterization as Surfynol® 4XX (S4XX, XX=40, 65, and 85), wherein increasing XX values indicate increasing amounts of ethoxylation on a backbone of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (Surfynol® 104). Sodiated triethylene glycol monobutyl ether (TBG) of m/z 229 (C10H22O4Na) was also identified in the seized counterfeit banknotes via EASI(+) FT-ICR MS. Surfynol® and TBG are constituents of inks used for inkjet printing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanorap is a new nanotechnological formulation for topical anesthesia composed of lidocaine (2.5%) and prilocaine (2.5%). The present study evaluated the pharmacokinetics (PK) of Nanorap. For the determination of lidocaine and prilocaine in human plasma a new method using high-performance liquid-chromatography coupled to tandem mass spectrometry was developed. Nanorap pharmacodynamic (PD) and its physical proprieties were also evaluated. Nanorap was administered by topical application of 2g to healthy volunteers and blood samples were collected for the PK analysis. The drugs were extracted from plasma by liquid-liquid extraction with ether/hexane (80/20, v/v). The chromatography separation was performed on a Genesis C18 analytical column 4 µm (100 x 2.1 mm i.d.) with a mobile phase of methanol/acetonitrile/water (40/30/30, for lidocaine, and 50/30/20, for prilocaine, v/v/v) + 2 mM of ammonium acetate and ropivacaine as internal standard. The drugs were quantified using a mass spectrometer with an electrospray source in the ESI positive mode (ES+) configured for multiple reaction monitoring. The PD of Nanorap was evaluated with the use of a visual analogue scale. Nanorap was characterized by cryofracture. The chromatography run time was 5.5 min for lidocaine and 3.3 min for prilocaine and the lower limit of quantification was 0.05 ng/mL for both drugs. Mean Cmax was 6.62 and 1.72 ng/mL for lidocaine and prilocaine, respectively. Median Tmax was 6.5 hours for both drugs. Nanocapsules had a mean size of 88nm and mean drug association of 92.5% and 89% for lidocaine and prilocaine, respectively. The PD study showed that Nanorap has a sufficient analgesic effect (>30% reduction in pain) after 10 minutes of application. A new simple, selective and sensitive method for determination of lidocaine and prilocaine in human plasma was developed. Nanorap generated safe plasma levels of the drugs and satisfactory analgesic effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ammonium nitrate fuel oil (ANFO) is an explosive used in many civil applications. In Brazil, ANFO has unfortunately also been used in criminal attacks, mainly in automated teller machine (ATM) explosions. In this paper, we describe a detailed characterization of the ANFO composition and its two main constituents (diesel and a nitrate explosive) using high resolution and accuracy mass spectrometry performed on an FT-ICR-mass spectrometer with electrospray ionization (ESI(±)-FTMS) in both the positive and negative ion modes. Via ESI(-)-MS, an ion marker for ANFO was characterized. Using a direct and simple ambient desorption/ionization technique, i.e., easy ambient sonic-spray ionization mass spectrometry (EASI-MS), in a simpler, lower accuracy but robust single quadrupole mass spectrometer, the ANFO ion marker was directly detected from the surface of banknotes collected from ATM explosion theft.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ropivacaine (RVC) is an aminoamide local anesthetic widely used in surgical procedures. Studies with RVC encapsulated in liposomes and complexed in cyclodextrins have shown good results, but in order to use RVC for lengthy procedures and during the postoperative period, a still more prolonged anesthetic effect is required. This study therefore aimed to provide extended RVC release and increased upload using modified liposomes. Three types of vesicles were studied: (i) large multilamellar vesicle (LMV), (ii) large multivesicular vesicle (LMVV) and (iii) large unilamellar vesicle (LUV), prepared with egg phosphatidylcholine/cholesterol/α-tocopherol (4:3:0.07 mol%) at pH 7.4. Ionic gradient liposomes (inside: pH 5.5, pH 5.5 + (NH4)2SO4 and pH 7.4 + (NH4)2SO4) were prepared and showed improved RVC loading, compared to conventional liposomes (inside: pH 7.4). An high-performance liquid chromatography analytical method was validated for RVC quantification. The liposomes were characterized in terms of their size, zeta potential, polydispersion, morphology, RVC encapsulation efficiency (EE(%)) and in vitro RVC release. LMVV liposomes provided better performance than LMV or LUV. The best formulations were prepared using pH 5.5 (LMVV 5.5in) or pH 7.4 with 250 mM (NH4)2SO4 in the inner aqueous core (LMVV 7.4in + ammonium sulfate), enabling encapsulation of as much as 2% RVC, with high uptake (EE(%) ∼70%) and sustained release (∼25 h). The encapsulation of RVC in ionic gradient liposomes significantly extended the duration of release of the anesthetic, showing that this strategy could be a viable means of promoting longer-term anesthesia during surgical procedures and during the postoperative period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review reports the application of inorganic and organic polymeric materials for cation removal by using nitrogenated basic centers. The data demonstrate the importance of the desired groups when free or immobilized on natural or synthesized inorganic polymers through silanol groups. Thus, the most studied silica gel is followed by natural crysotile and talc polymers, and the synthesized mesopore silicas, talc-like, silicic acids, phosphates and phyllosilicates. The organic natural biopolymeric chitin and cellulose were chemically modified to improve the availability of the amine groups or the reactivity with desirable molecules to enlarge the content of basic centers. The cation removal takes place at the solid/liquid interface and some interactive effects have their thermodynamic data determined.