6 resultados para Zoonotic Transmission
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Giardia duodenalis is a flagellate protozoan that parasitizes humans and several other mammals. Protozoan contamination has been regularly documented at important environmental sites, although most of these studies were performed at the species level. There is a lack of studies that correlate environmental contamination and clinical infections in the same region. The aim of this study is to evaluate the genetic diversity of a set of clinical and environmental samples and to use the obtained data to characterize the genetic profile of the distribution of G. duodenalis and the potential for zoonotic transmission in a metropolitan region of Brazil. The genetic assemblages and subtypes of G. duodenalis isolates obtained from hospitals, a veterinary clinic, a day-care center and important environmental sites were determined via multilocus sequence-based genotyping using three unlinked gene loci. Cysts of Giardia were detected at all of the environmental sites. Mixed assemblages were detected in 25% of the total samples, and an elevated number of haplotypes was identified. The main haplotypes were shared among the groups, and new subtypes were identified at all loci. Ten multilocus genotypes were identified: 7 for assemblage A and 3 for assemblage B. There is persistent G. duodenalis contamination at important environmental sites in the city. The identified mixed assemblages likely represent mixed infections, suggesting high endemicity of Giardia in these hosts. Most Giardia isolates obtained in this study displayed zoonotic potential. The high degree of genetic diversity in the isolates obtained from both clinical and environmental samples suggests that multiple sources of infection are likely responsible for the detected contamination events. The finding that many multilocus genotypes (MLGs) and haplotypes are shared by different groups suggests that these sources of infection may be related and indicates that there is a notable risk of human infection caused by Giardia in this region.
Resumo:
One of the great challenges of the scientific community on theories of genetic information, genetic communication and genetic coding is to determine a mathematical structure related to DNA sequences. In this paper we propose a model of an intra-cellular transmission system of genetic information similar to a model of a power and bandwidth efficient digital communication system in order to identify a mathematical structure in DNA sequences where such sequences are biologically relevant. The model of a transmission system of genetic information is concerned with the identification, reproduction and mathematical classification of the nucleotide sequence of single stranded DNA by the genetic encoder. Hence, a genetic encoder is devised where labelings and cyclic codes are established. The establishment of the algebraic structure of the corresponding codes alphabets, mappings, labelings, primitive polynomials (p(x)) and code generator polynomials (g(x)) are quite important in characterizing error-correcting codes subclasses of G-linear codes. These latter codes are useful for the identification, reproduction and mathematical classification of DNA sequences. The characterization of this model may contribute to the development of a methodology that can be applied in mutational analysis and polymorphisms, production of new drugs and genetic improvement, among other things, resulting in the reduction of time and laboratory costs.
Resumo:
The basic reproduction number is a key parameter in mathematical modelling of transmissible diseases. From the stability analysis of the disease free equilibrium, by applying Routh-Hurwitz criteria, a threshold is obtained, which is called the basic reproduction number. However, the application of spectral radius theory on the next generation matrix provides a different expression for the basic reproduction number, that is, the square root of the previously found formula. If the spectral radius of the next generation matrix is defined as the geometric mean of partial reproduction numbers, however the product of these partial numbers is the basic reproduction number, then both methods provide the same expression. In order to show this statement, dengue transmission modelling incorporating or not the transovarian transmission is considered as a case study. Also tuberculosis transmission and sexually transmitted infection modellings are taken as further examples.
Resumo:
In this study, the transmission-line modeling (TLM) applied to bio-thermal problems was improved by incorporating several novel computational techniques, which include application of graded meshes which resulted in 9 times faster in computational time and uses only a fraction (16%) of the computational resources used by regular meshes in analyzing heat flow through heterogeneous media. Graded meshes, unlike regular meshes, allow heat sources to be modeled in all segments of the mesh. A new boundary condition that considers thermal properties and thus resulting in a more realistic modeling of complex problems is introduced. Also, a new way of calculating an error parameter is introduced. The calculated temperatures between nodes were compared against the results obtained from the literature and agreed within less than 1% difference. It is reasonable, therefore, to conclude that the improved TLM model described herein has great potential in heat transfer of biological systems.
Resumo:
The aim of this study was to estimate barite mortar attenuation curves using X-ray spectra weighted by a workload distribution. A semi-empirical model was used for the evaluation of transmission properties of this material. Since ambient dose equivalent, H(⁎)(10), is the radiation quantity adopted by IAEA for dose assessment, the variation of the H(⁎)(10) as a function of barite mortar thickness was calculated using primary experimental spectra. A CdTe detector was used for the measurement of these spectra. The resulting spectra were adopted for estimating the optimized thickness of protective barrier needed for shielding an area in an X-ray imaging facility.
Resumo:
The local anesthetic effects on neuromuscular junction and its influence on blockade produced by nondepolarizing neuromuscular blockers are still under-investigated; however, this interaction has been described in experimental studies and in humans. The aim of this study was to evaluate in vitro the interaction between ropivacaine and pancuronium, the influence on transmission and neuromuscular blockade, and the effectiveness of neostigmine and 4-aminopyridine to reverse the blockade. Rats were divided into groups (n=5) according to the study drug: ropivacaine (5μgmL(-1)); pancuronium (2μg.mL(-1)); ropivacaine+pancuronium. Neostigmine and 4-aminopyridine were used at concentrations of 2μgmL(-1) and 20μgmL(-1), respectively. The effects of ropivacaine on membrane potential and miniature end-plate potential, the amplitude of diaphragm responses before and 60minutes after the addition of ropivacaine (degree of neuromuscular blockade with pancuronium and with the association of pancuronium-ropivacaine), and the effectiveness of neostigmine and 4-aminopyridine on neuromuscular block reversal were evaluated. Ropivacaine did not alter the amplitude of muscle response (the membrane potential), but decreased the frequency and amplitude of the miniature end-plate potential. Pancuronium blockade was potentiated by ropivacaine, and partially and fully reversed by neostigmine and 4-aminopyridine, respectively. Ropivacaine increased the neuromuscular block produced by pancuronium. The complete antagonism with 4-aminopyridine suggests presynaptic action of ropivacaine.