10 resultados para Water barrier properties

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Shelled, roasted and salted cashew nut kernels were packaged in three different flexible materials (PP/PE= polypropylene / polyethylene; PETmet/PE= metallized polyethylene terephthalate / polyethylene; PET/Al/LDPE= polyethylene terephthalate / aluminum foil / low density polyethylene ), with different barrier properties. Kernels were stored for one year at 30° C and 80% relative humidity. Quantitative descriptive sensory analysis (QDA) were performed at the end of storage time. Descriptive terms obtained for kernels characterization were brown color, color uniformity and rugosity for appearance; toasted kernel, sweet, old and rancidity for odor; toasted kernel, sweet, old rancidity, salt and bitter for taste, crispness for texture. QDA showed that factors responsible for sensory quality decrease, after one year storage, were increase in old aroma and taste, increase in rancidity aroma and taste, decrease in roasted kernel aroma and taste, and decrease of crispness. Sensory quality decrease was higher in kernels packaged in PP/PE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was aimed at spray drying hydrolysed casein using gum Arabic as the carrier agent, in order to decrease the bitter taste. Three formulations with differing proportions of hydrolysed casein: gum Arabic (10:90, 20:80 and 30:70) were prepared and characterized. They were evaluated for their moisture content, water activity, hygroscopicity, dispersibility in water and in oil, particle size and distribution, particle morphology, thermal behaviour (DSC) and bitter taste by a trained sensory panel using a paired-comparison test (free samples vs. spray dried samples). The proportion of hydrolysed casein did not affect the morphology of the microspheres. The spray drying process increased product stability and modified the dissolution time, but had no effect on the ability of the material to dissolve in either water or oil. The sensory tests showed that the spray drying process using gum Arabic as the carrier was efficient in attenuating or masking the bitter taste of the hydrolysed casein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work addresses the development and characterization of porous chitosan-alginate based polyelectrolyte complexes, obtained by using two different proportions of the biocompatible surfactant Pluronic F68. These biomaterials are proposed for applications as biodegradable and biocompatible wound dressing and/or scaffolds. The results indicate that thickness, roughness, porosity and liquid uptake of the membranes increase with the amount of surfactant used, while their mechanical properties and stability in aqueous media decrease. Other important properties such as color and surface hydrophilicity (water contact angle) are not significantly altered or did not present a clear tendency of variation with the increase of the amount of surfactant added to the polyelectrolyte complexes, such as real density, average pore diameter, total pore volume and surface area. The prepared biomaterials were not cytotoxic to L929 cells. In conclusion, it is possible to tune the physicochemical properties of chitosan-alginate polyelectrolyte complexes, through the variation of the proportion of surfactant (Pluronic F68) added to the mixture, so as to enable the desired application of these biomaterials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the influence of radiotherapy on the dentin bond strength of teeth extracted from patients who had undergone head and neck radiotherapy. A total of 36 samples were divided into two experimental groups: group I (control group, n = 18) and group II (in vivo irradiated group, n = 18). Groups I and II were further separated into three subgroups (six specimens per subgroup), which were further assigned to the three adhesive system protocols employed: Single Bond 2 (SB) (3M ESPE), Easy Bond (EB) (3M ESPE) and Clearfil SE Bond (CSE) (Kuraray). The adhesive systems were applied to the prepared surface according to the manufacturers' instructions and restored using composite resin (Filtek Supreme, 3M ESPE). After 24 h in deionised water (37(o)C), teeth were horizontally and vertically cut to obtain beam specimens with a cross-section area of 0.8 ± 1.0 mm(2). Specimens were tested in tension using a universal testing machine at a cross-speed of 0.5 mm/min. Fracture patterns were observed under SEM. Data was analysed by two-way analysis of variance (p ≤ 0.05). No statistically significant difference was found between the irradiated (R/SB = 44.66 ± 10.12 MPa; R/EB = 41.48 ± 12.71 MPa; and R/CSE = 46.01 ± 6.98 MPa) and control group (C/SB = 39.12 ± 9.51 MPa; C/EB = 42.40 ± 6.66 MPa; and C/CSE = 36.58 ± 7.06 MPa) for any of the adhesive systems. All groups presented a predominance of mixed fracture modes. Head and neck radiotherapy did not affect dentin bond strength for the adhesive materials tested in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enormous amounts of pesticides are manufactured and used worldwide, some of which reach soils and aquatic systems. Glyphosate is a non-selective herbicide that is effective against all types of weeds and has been used for many years. It can therefore be found as a contaminant in water, and procedures are required for its removal. This work investigates the use of biopolymeric membranes prepared with chitosan (CS), alginate (AG), and a chitosan/alginate combination (CS/AG) for the adsorption of glyphosate present in water samples. The adsorption of glyphosate by the different membranes was investigated using the pseudo-first order and pseudo-second order kinetic models, as well as the Langmuir and Freundlich isotherm models. The membranes were characterized regarding membrane solubility, swelling, mechanical, chemical and morphological properties. The results of kinetics experiments showed that adsorption equilibrium was reached within 4 h and that the CS membrane presented the best adsorption (10.88 mg of glyphosate/g of membrane), followed by the CS/AG bilayer (8.70 mg of glyphosate/g of membrane). The AG membrane did not show any adsorption capacity for this herbicide. The pseudo-second order model provided good fits to the glyphosate adsorption data on CS and CS/AG membranes, with high correlation coefficient values. Glyphosate adsorption by the membranes could be fitted by the Freundlich isotherm model. There was a high affinity between glyphosate and the CS membrane and moderate affinity in the case of the CS/AG membrane. Physico-chemical characterization of the membranes showed low values of solubility in water, indicating that the membranes are stable and not soluble in water. The SEM and AFM analysis showed evidence of the presence of glyphosate on CS membranes and on chitosan face on CS/AG membranes. The results showed that the glyphosate herbicide can be adsorbed by chitosan membranes and the proposed membrane-based methodology was successfully used to treat a water sample contaminated with glyphosate. Biopolymer membranes therefore potentially offer a versatile method to eliminate agricultural chemicals from water supplies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to estimate barite mortar attenuation curves using X-ray spectra weighted by a workload distribution. A semi-empirical model was used for the evaluation of transmission properties of this material. Since ambient dose equivalent, H(⁎)(10), is the radiation quantity adopted by IAEA for dose assessment, the variation of the H(⁎)(10) as a function of barite mortar thickness was calculated using primary experimental spectra. A CdTe detector was used for the measurement of these spectra. The resulting spectra were adopted for estimating the optimized thickness of protective barrier needed for shielding an area in an X-ray imaging facility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The taxonomic position of a bacterium isolated from water samples from the Rio Negro, in Amazon, Brazil, was determined by using a polyphasic approach. The organism formed a distinct phyletic line in the Chromobacterium 16S rRNA gene tree and had chemotaxonomic and morphological properties consistent with its classification in this genus. It was found to be closely related to Chromobacterium vaccinii DSM 25150(T) (98.6 % 16S rRNA gene similarity) and shared 98.5 % 16S rRNA gene similarity with Chromobacterium piscinae LGM 3947(T). DNA-DNA relatedness studies showed that isolate CBMAI 310(T) belongs to distinct genomic species. The isolate was readily distinguished from the type strain of these species using a combination of phenotypic and chemotaxonomic properties. Thus, based on genotypic and phenotypic data, it is proposed that isolate CBMAI 310(T) (=DSM 26508(T)) be classified in the genus Chromobacterium as the type strain of a novel species, namely, Chromobacterium amazonense sp. nov.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bologna-type sausages were produced with 50% of their pork back-fat content replaced with gels elaborated with different ratios of pork skin, water, and amorphous cellulose (1:1:0, 1:1:0.1, 1:1:0.2, 1:1:0.3, and 1:1:0.4). The impact of such replacement on the physico-chemical characteristics and the consumer sensory profiling was evaluated. The modified treatments had 42% less fat, 18% more protein, and 8% more moisture than the control group. Treatments with amorphous cellulose had a lower cooking loss and higher emulsion stability. High amorphous cellulose content (1:1:0.3 and 1:1:0.4) increased hardness, gumminess, and chewiness. The gel formulated with the ratio of 1:1:0.2 (pork skin: water: amorphous cellulose gel) provided a sensory sensation similar to that provided by fat and allowed products of good acceptance to be obtained. Therefore, a combination of pork skin and amorphous cellulose is useful in improving technological quality and producing healthier and sensory acceptable bologna-type sausages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several biotechnological processes can show an undesirable formation of emulsions making difficult phase separation and product recovery. The breakup of oil-in-water emulsions stabilized by yeast was studied using different physical and chemical methods. These emulsions were composed by deionized water, hexadecane and commercial yeast (Saccharomyces cerevisiae). The stability of the emulsions was evaluated varying the yeast concentration from 7.47 to 22.11% (w/w) and the phases obtained after gravity separation were evaluated on chemical composition, droplet size distribution, rheological behavior and optical microscopy. The cream phase showed kinetic stability attributed to mechanisms as electrostatic repulsion between the droplets, a possible Pickering-type stabilization and the viscoelastic properties of the concentrated emulsion. Oil recovery from cream phase was performed using gravity separation, centrifugation, heating and addition of demulsifier agents (alcohols and magnetic nanoparticles). Long centrifugation time and high centrifugal forces (2h/150,000×g) were necessary to obtain a complete oil recovery. The heat treatment (60°C) was not enough to promote a satisfactory oil separation. Addition of alcohols followed by centrifugation enhanced oil recovery: butanol addition allowed almost complete phase separation of the emulsion while ethanol addition resulted in 84% of oil recovery. Implementation of this method, however, would require additional steps for solvent separation. Addition of charged magnetic nanoparticles was effective by interacting electrostatically with the interface, resulting in emulsion destabilization under a magnetic field. This method reached almost 96% of oil recovery and it was potentially advantageous since no additional steps might be necessary for further purifying the recovered oil.