3 resultados para Vision algorithms for grasping
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Diabetic Retinopathy (DR) is a complication of diabetes that can lead to blindness if not readily discovered. Automated screening algorithms have the potential to improve identification of patients who need further medical attention. However, the identification of lesions must be accurate to be useful for clinical application. The bag-of-visual-words (BoVW) algorithm employs a maximum-margin classifier in a flexible framework that is able to detect the most common DR-related lesions such as microaneurysms, cotton-wool spots and hard exudates. BoVW allows to bypass the need for pre- and post-processing of the retinographic images, as well as the need of specific ad hoc techniques for identification of each type of lesion. An extensive evaluation of the BoVW model, using three large retinograph datasets (DR1, DR2 and Messidor) with different resolution and collected by different healthcare personnel, was performed. The results demonstrate that the BoVW classification approach can identify different lesions within an image without having to utilize different algorithms for each lesion reducing processing time and providing a more flexible diagnostic system. Our BoVW scheme is based on sparse low-level feature detection with a Speeded-Up Robust Features (SURF) local descriptor, and mid-level features based on semi-soft coding with max pooling. The best BoVW representation for retinal image classification was an area under the receiver operating characteristic curve (AUC-ROC) of 97.8% (exudates) and 93.5% (red lesions), applying a cross-dataset validation protocol. To assess the accuracy for detecting cases that require referral within one year, the sparse extraction technique associated with semi-soft coding and max pooling obtained an AUC of 94.2 ± 2.0%, outperforming current methods. Those results indicate that, for retinal image classification tasks in clinical practice, BoVW is equal and, in some instances, surpasses results obtained using dense detection (widely believed to be the best choice in many vision problems) for the low-level descriptors.
Resumo:
To evaluate the use of optical and nonoptical aids during reading and writing activities in individuals with acquired low vision. This study was performed using descriptive and cross-sectional surveys. The data collection instrument was created with structured questions that were developed from an exploratory study and a previous test based on interviews, and it evaluated the following variables: personal characteristics, use of optical and nonoptical aids, and activities that required the use of optical and nonoptical aids. The study population included 30 subjects with acquired low vision and visual acuities of 20/200-20/400. Most subjects reported the use of some optical aids (60.0%). Of these 60.0%, the majority (83.3%) cited spectacles as the most widely used optical aid. The majority (63.3%) of subjects also reported the use of nonoptical aids, the most frequent ones being letter magnification (68.4%), followed by bringing the objects closer to the eyes (57.8%). Subjects often used more than one nonoptical aid. The majority of participants reported the use of optical and nonoptical aids during reading activities, highlighting the use of spectacles, magnifying glasses, and letter magnification; however, even after the use of these aids, we found that the subjects often needed to read the text more than once to understand it. During writing activities, all subjects reported the use of optical aids, while most stated that they did not use nonoptical aids for such activities.
Biased Random-key Genetic Algorithms For The Winner Determination Problem In Combinatorial Auctions.
Resumo:
Abstract In this paper, we address the problem of picking a subset of bids in a general combinatorial auction so as to maximize the overall profit using the first-price model. This winner determination problem assumes that a single bidding round is held to determine both the winners and prices to be paid. We introduce six variants of biased random-key genetic algorithms for this problem. Three of them use a novel initialization technique that makes use of solutions of intermediate linear programming relaxations of an exact mixed integer-linear programming model as initial chromosomes of the population. An experimental evaluation compares the effectiveness of the proposed algorithms with the standard mixed linear integer programming formulation, a specialized exact algorithm, and the best-performing heuristics proposed for this problem. The proposed algorithms are competitive and offer strong results, mainly for large-scale auctions.