2 resultados para Tm:YAP

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to compare the soybean crop mapping in the western of Parana State by MODIS/Terra and TM/Landsat 5 images. Firstly, it was generated a soybean crop mask using six TM images covering the crop season, which was used as a reference. The images were submitted to Parallelepiped and Maximum Likelihood digital classification algorithms, followed by visual inspection. Four MODIS images, covering the vegetative peak, were classified using the Parallelepiped method. The quality assessment of MODIS and TM classification was carried out through an Error Matrix, considering 100 sample points between soybean or not soybean, randomly allocated in each of the eight municipalities within the study area. The results showed that both the Overall Classification (OC) and the Kappa Index (KI) have produced values ranging from 0.55 to 0.80, considered good to very good performances, either in TM or MODIS images. When OC and KI, from both sensors were compared, it wasn't found no statistical difference between them. The soybean mapping, using MODIS, has produced 70% of reliance in terms of users. The main conclusion is that the mapping of soybean by MODIS is feasible, with the advantage to have better temporal resolution than Landsat, and to be available on the internet, free of charge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to analyze changes in the spectral behavior of the soybean crop through spectral profiles of the vegetation indexes NDVI and GVI, expressed by different physical values such as apparent bi-directional reflectance factor (BRF), surface BRF, and normalized BRF derived from images of the Landsat 5/TM. A soybean area located in Cascavel, Paraná, was monitored by using five images of Landsat 5/TM during the 2004/2005 harvesting season. The images were submitted to radiometric transformation, atmospheric correction and normalization, determining physical values of apparent BRF, surface BRF and normalized BRF. NDVI and GVI images were generated in order to distinguish the soybean biomass spectral response. The treatments showed different results for apparent, surface and normalized BRF. Through the profiles of average NDVI and GVI, it was possible to monitor the entire soybean cycle, characterizing its development. It was also observed that the data from normalized BRF negatively affected the spectral curve of soybean crop, mainly, during the phase of vegetative growth, in the 12-9-2004 image.