33 resultados para Tissues adipose

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crohn's disease (CD) is associated with complex pathogenic pathways involving defects in apoptosis mechanisms. Recently, mesenteric adipose tissue (MAT) has been associated with CD ethiopathology, since adipose thickening is detected close to the affected intestinal area. However, the potential role of altered apoptosis in MAT of CD has not been addressed. To evaluate apoptosis in the intestinal mucosa and MAT of patients with CD. Samples of intestinal mucosa and MAT from patients with ileocecal CD and from non-inflammatory bowel diseases patients (controls) were studied. Apoptosis was assessed by TUNEL assay and correlated with the adipocytes histological morphometric analysis. The transcriptional and protein analysis of selected genes and proteins related to apoptosis were determined. TUNEL assay showed fewer apoptotic cells in CD, when compared to the control groups, both in the intestinal mucosa and in MAT. In addition, the number of apoptotic cells (TUNEL) correlated significantly with the area and perimeter of the adipose cells in MAT. Transcriptomic and proteomic analysis reveal a significantly lower transcript and protein levels of Bax in the intestinal mucosa of CD, compared to the controls; low protein levels of Bax were found localized in the lamina propria and not in the epithelium of this tissue. Furthermore, higher level of Bcl-2 and low level of Caspase 3 were seen in the MAT of CD patients. The defective apoptosis in MAT may explain the singular morphological characteristics of this tissue in CD, which may be implicated in the pathophysiology of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate whether altered occlusion affects both the condylar cartilage thickness and the cytokine levels of the TMJs of rats. Thirty adult-male rats (n=30) were randomly assigned to three experimental conditions: a control group that underwent sham operations with unaltered occlusion; an FPDM group that underwent functional posterior displacement of the mandible that was induced by an incisor guiding appliance; and an iOVD group in which the increased occlusal vertical dimension was induced in the molars. The rats were subjected to the FPDM or iOVD model for 14 days and then killed. Both the right and left TMJs were removed and randomly assigned to examination with staining or immunoassay techniques. Toluidine blue staining was used to measure the thicknesses of the four layers of the articular cartilage (i.e., the fibrous, proliferating, mature, and hypertrophic layers). ELISA assays were used to assess the concentrations of the pro-inflammatory cytokines IL-1α, IL-1β, IL-6, and tumour necrosis factor (TNF-α). The measurements of the articular cartilage layers and cytokine concentrations were analyzed with ANOVA and Tukey's tests and Kruskal-Wallis and Dunn tests, respectively (α=5%). The thickness of articular cartilage in the FPDM group (0.3±0.03mm) was significantly greater than those of the control (0.2±0.01mm) and iOVD (0.25±0.03mm) groups. No significant difference was observed between the control and iOVD groups. The four articular cartilage layers were thicker in the FPDM group than in the control and iOVD groups, and the latter two groups did not differ one from each other. Both the FPDM and iOVD groups exhibited higher cytokine levels than did the control (p<0.05) group. Compared to the FPDM group, the iOVD group exhibited significantly higher levels of IL-1β and TNF-α. Both models induced inflammation in the TMJ and caused significant structural changes in the TMJ and surrounding tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surgical treatment for enterocutaneous fistulas (EF) frequently fails. Cell therapy may represent a new approach to treatment. Mesenchymal stromal cells (MSCs) have high proliferative and differentiation capacity. This study aimed to investigate whether MSCs could adhere to suture filament (SF), promoting better EF healing. MSCs, 1 × 10(6), from adipose tissue (ATMSCs) were adhered to a Polyvicryl SF by adding a specific fibrin glue formulation. Adhesion was confirmed by confocal and scanning electron microscopy (SEM). A cecal fistula was created in 22 Wistar rats by incising the cecum and suturing the opening to the surgical wound subcutaneously with four separate stitches. The animals were randomly allocated to three groups: control (CG)-five animals, EF performed; injection (IG)-eight animals 1 × 10(6) ATMSCs injected around EF borders; and suture filament (SG): nine animals, sutured with 1 × 10(6) ATMSCs attached to the filaments with fibrin glue. Fistulas were photographed on the operation day and every 3 days until the 21st day and analyzed by two observers using ImageJ Software. Confocal and SEM results demonstrated ATMSCs adhered to SF (ATMSCs-SF). The average reduction size of the fistula area at 21st day was greater for the SG group (90.34%, P < 0.05) than the IG (71.80%) and CG (46.54%) groups. ATMSCs adhered to SF maintain viability and proliferative capacity. EF submitted to ATMSCs-SF procedure showed greater recovery and healing. This approach might be a new and effective tool for EF treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ectopic fat is often identified in obese subjects who are susceptible to the development of type 2 diabetes mellitus (T2DM). The ectopic fat favours the decrease in insulin sensitivity (IS) and adiponectin levels. We aimed to evaluate the effect of biliopancreatic diversion (BPD) on the accumulation of ectopic fat, adiponectin levels and IS in obese with T2DM. A nonrandomised controlled study was performed on sixty-eight women: 19 lean-control (23.0 ± 2.2 kg/m(2)) and 18 obese-control (35.0 ± 4.8 kg/m(2)) with normal glucose tolerance and 31 obese with T2DM (36.3 ± 3.7 kg/m(2)). Of the 31 diabetic women, 20 underwent BPD and were reassessed 1 month and 12 months after surgery. The subcutaneous adipose tissue, visceral adipose tissue, epicardial adipose tissue and pericardial adipose tissue were evaluated by ultrasonography. The IS was assessed by a hyperglycaemic clamp, applying the minimal model of glucose. One month after surgery, there was a reduction in visceral and subcutaneous adipose tissues, whereas epicardial and pericardial adipose tissues exhibited significant reduction at the 12-month assessment (p < 0.01). Adiponectin levels and IS were normalised 1 month after surgery, resembling lean-control values and elevated above the obese-control values (p < 0.01). After 12 months, the improvement in IS and adiponectin was maintained, and 17 of the 20 operated patients exhibited fasting glucose and glycated haemoglobin within the normal range. After BPD, positive physiological adaptations occurred in grade I and II obese patients with T2DM. These adaptations relate to the restoration of IS and decreased adiposopathy and explain the acute (1 month) and chronic (12 months) improvements in the glycaemic control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peripheral insulin resistance (IR) is one of the main side effects caused by glucocorticoid (GC)-based therapies, and the molecular mechanisms of GC-induced IR are not yet fully elucidated. Thus, we aimed to investigate the effects of dexamethasone treatment on the main components of insulin and inflammatory signaling in the adipose tissue of rats. Male Wistar rats received daily injections of dexamethasone (1mg/kg body weight (b.w.), intraperitoneally (i.p.)) for 5 days (DEX), whereas control rats received saline (CTL). The metabolic status was investigated, and the epididymal fat fragments were collected for lipolysis and western blot analyses. The DEX rats became hyperglycemic, hyperinsulinemic, insulin resistant and glucose intolerant, compared with the CTL rats (P<0.05). The basal glycerol release in the fat fragments was 1.5-fold higher in the DEX rats (P<0.05). The phosphorylation of protein kinase B (PKB) at ser(473) decreased by 44%, whereas, the phosphorylation of insulin receptor substrate (IRS)-1 at ser(307) increased by 93% in the adipose tissue of the DEX rats after an oral bolus of glucose (P<0.05). The basal phosphorylation of c-jun-N-terminal kinase (JNK) and inhibitor of nuclear factor kappa-B (IKKβ) proteins was reduced by 46% and 58%, respectively, in the adipose tissue of the DEX rats (P<0.05). This was paralleled with a significant reduction (47%) in the glucocorticoid receptor (GR) protein content in the adipose tissue of the DEX rats (P<0.05). The insulin-resistant status of rats induced by dexamethasone administration have PKB and IRS-1 activity attenuated in epididymal fat without increases in the phosphorylation of the proinflammatory signals JNK and IKKβ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leg ulcers represent a particularly disabling complication in patients with sickle cell disease (SCD). Platelet gel (PG) is a novel therapeutic strategy used for accelerating wound healing of a wide range of tissues through the continuous release of platelet growth factors. Here, we describe the use of PG preparation according to Anitua's PRGF (preparations rich in growth factors) protocol for treating chronic nonhealing ulcers in patients with SCD. A positive response occurred in 3 patients with an area reduction of 85.7% to 100%, which occurred within 7 to 10 weeks, and a 35.2% and 20.5% of area reduction in 2 other patients, who however, had large ulcers. After calcium chloride addition, the platelet-rich plasmas demonstrated enhanced platelet-derived growth factors-BB (P < .001), transforming growth factor-β1 (P = .015), vascular endothelial growth factors (P = .03), and hepatocyte growth factors (nonsignificant) secretion. Furthermore, calcium chloride addition induced a significant decrease in platelet number (P = .0134) and there was no leukocyte detection in the PG product. These results demonstrate that PG treatment might impact the healing of leg ulcers in sickle cell disease, especially in patients with small ulcers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To estimate the impact of aging and diabetes on insulin sensitivity, beta-cell function, adipocytokines, and incretin production. Hyperglycemic clamps, arginine tests and meal tolerance tests were performed in 50 non-obese subjects to measure insulin sensitivity (IS) and insulin secretion as well as plasma levels of glucagon, GLP-1 and GIP. Patients with diabetes and healthy control subjects were divided into the following groups: middle-aged type 2 diabetes (MA-DM), aged Type 2 diabetes (A-DM) and middle-aged or aged subjects with normal glucose tolerance (MA-NGT or A-NGT). IS, as determined by the homeostasis model assessment, glucose infusion rate, and oral glucose insulin sensitivity, was reduced in the aged and DM groups compared with MA-NGT, but it was similar in the MA-DM and A-DM groups. Insulinogenic index, first and second phase insulin secretion and the disposition indices, but not insulin response to arginine, were reduced in the aged and DM groups. Postprandial glucagon production was higher in MA-DM compared to MA-NGT. Whereas the GLP-1 production was reduced in A-DM, no differences between groups were observed in GIP production. In non-obese subjects, diabetes and aging impair insulin sensitivity. Insulin production is reduced by aging, and diabetes exacerbates this condition. Aging associated defects superimposed diabetic physiopathology, particularly regarding GLP-1 production. On the other hand, the glucose-independent secretion of insulin was preserved. Knowledge of the complex relationship between aging and diabetes could support the development of physiopathological and pharmacological based therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guarana seeds have the highest caffeine concentration among plants accumulating purine alkaloids, but in contrast with coffee and tea, practically nothing is known about caffeine metabolism in this Amazonian plant. In this study, the levels of purine alkaloids in tissues of five guarana cultivars were determined. Theobromine was the main alkaloid that accumulated in leaves, stems, inflorescences and pericarps of fruit, while caffeine accumulated in the seeds and reached levels from 3.3% to 5.8%. In all tissues analysed, the alkaloid concentration, whether theobromine or caffeine, was higher in young/immature tissues, then decreasing with plant development/maturation. Caffeine synthase activity was highest in seeds of immature fruit. A nucleotide sequence (PcCS) was assembled with sequences retrieved from the EST database REALGENE using sequences of caffeine synthase from coffee and tea, whose expression was also highest in seeds from immature fruit. The PcCS has 1083bp and the protein sequence has greater similarity and identity with the caffeine synthase from cocoa (BTS1) and tea (TCS1). A recombinant PcCS allowed functional characterization of the enzyme as a bifunctional CS, able to catalyse the methylation of 7-methylxanthine to theobromine (3,7-dimethylxanthine), and theobromine to caffeine (1,3,7-trimethylxanthine), respectively. Among several substrates tested, PcCS showed higher affinity for theobromine, differing from all other caffeine synthases described so far, which have higher affinity for paraxanthine. When compared to previous knowledge on the protein structure of coffee caffeine synthase, the unique substrate affinity of PcCS is probably explained by the amino acid residues found in the active site of the predicted protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the molecular mechanisms of oral carcinogenesis will yield important advances in diagnostics, prognostics, effective treatment, and outcome of oral cancer. Hence, in this study we have investigated the proteomic and peptidomic profiles by combining an orthotopic murine model of oral squamous cell carcinoma (OSCC), mass spectrometry-based proteomics and biological network analysis. Our results indicated the up-regulation of proteins involved in actin cytoskeleton organization and cell-cell junction assembly events and their expression was validated in human OSCC tissues. In addition, the functional relevance of talin-1 in OSCC adhesion, migration and invasion was demonstrated. Taken together, this study identified specific processes deregulated in oral cancer and provided novel refined OSCC-targeting molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Desmoid tumor (DT) is a common manifestation of Gardner's Syndrome (GS), although it is a rare condition in the general population. DT in patients with GS is usually located in the abdominal wall and/or intra-abdominal cavity. We report a case of a 32 years-old female patient with familial adenomatous polyposis (FAP), who was already submitted to total colectomy and developed multiple DT, located in the abdominal wall and in the left breast. The patient underwent several surgical procedures, with a multidisciplinary team of surgeons. Wide surgical resections of the left breast and the abdominal wall tumors were performed in separate steps. Polypropylene mesh reconstruction and muscle flaps were needed to cover the defects of the thoracic and abdominal walls. After partial necrosis of the adipose-cutaneous flap in the abdomen that required a new skin graft, she had a satisfactory outcome with complete healing of the surgical incisions. DT is frequent in GS, however, breast localization is very rare, with few cases reported in the literature. Recurrence of DT is not negligible, even after a wide surgical resection. GS patients must be followed up closely, and clinical examination, associated with imaging studies, should be performed to detect any signs of tumor. DT represents one of the most significant causes of the morbidity and mortality that affects FAP patients following colectomy. In general, the surgical procedures to excise DT are highly complex, requiring a multidisciplinary team.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Revascularization outcome depends on microbial elimination because apical repair will not happen in the presence of infected tissues. This study evaluated the microbial composition of traumatized immature teeth and assessed their reduction during different stages of the revascularization procedures performed with 2 intracanal medicaments. Fifteen patients (7-17 years old) with immature teeth were submitted to the revascularization procedures; they were divided into 2 groups according to the intracanal medicament used: TAP group (n = 7), medicated with a triple antibiotic paste, and CHP group (n = 8), dressed with calcium hydroxide + 2% chlorhexidine gel. Samples were taken before any treatment (S1), after irrigation with 6% NaOCl (S2), after irrigation with 2% chlorhexidine (S3), after intracanal dressing (S4), and after 17% EDTA irrigation (S5). Cultivable bacteria recovered from the 5 stages were counted and identified by means of polymerase chain reaction assay (16S rRNA). Both groups had colony-forming unit counts significantly reduced after S2 (P < .05); however, no significant difference was found between the irrigants (S2 and S3, P = .99). No difference in bacteria counts was found between the intracanal medicaments used (P = .95). The most prevalent bacteria detected were Actinomyces naeslundii (66.67%), followed by Porphyromonas endodontalis, Parvimonas micra, and Fusobacterium nucleatum, which were detected in 33.34% of the root canals. An average of 2.13 species per canal was found, and no statistical correlation was observed between bacterial species and clinical/radiographic features. The microbial profile of infected immature teeth is similar to that of primarily infected permanent teeth. The greatest bacterial reduction was promoted by the irrigation solutions. The revascularization protocols that used the tested intracanal medicaments were efficient in reducing viable bacteria in necrotic immature teeth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Association between hypertension and bladder symptoms has been described. We hypothesized that micturition dysfunction may be associated with renin-angiotensin system (RAS) acting in urethra. The effects of the anti-hypertensive drugs losartan (AT1 antagonist) and captopril (angiotensin-converting enzyme inhibitor) in comparison with atenolol (β1-adrenoceptor antagonist independently of RAS blockade) have been investigated in bladder and urethral dysfunctions during renovascular hypertension in rats. Two kidney-1 clip (2K-1C) rats were treated with losartan (30 mg/kg/day), captopril (50mg/kg/day) or atenolol (90 mg/kg/day) for eight weeks. Cystometric study, bladder and urethra smooth muscle reactivities, measurement of cAMP levels and p38 MAPK phosphorylation in urinary tract were determined. Losartan and captopril markedly reduced blood pressure in 2K-1C rats. The increases in non-voiding contractions, voiding frequency and bladder capacity in 2K-1C rats were prevented by treatments with both drugs. Likewise, losartan and captopril prevented the enhanced bladder contractions to electrical-field stimulation (EFS) and carbachol, along with the impaired relaxations to β-adrenergic-cAMP stimulation. Enhanced neurogenic contractions and impaired nitrergic relaxations were observed in urethra from 2K-1C rats. Angiotensin II also produced greater urethral contractions that were accompanied by higher phosphorylation of p38 MAPK in urethral tissues of 2K-1C rats. Losartan and captopril normalized the urethral dysfunctions in 2K-1C rats. In contrast, atenolol treatment largely reduced the blood pressure in 2K-1C rats but failed to affect the urinary tract smooth muscle dysfunction. The urinary tract smooth muscle dysfunction in 2K-1C rats takes place by local RAS activation irrespective of levels of arterial blood pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uncoupling protein one (UCP1) is a mitochondrial inner membrane protein capable of uncoupling the electrochemical gradient from adenosine-5'-triphosphate (ATP) synthesis, dissipating energy as heat. UCP1 plays a central role in nonshivering thermogenesis in the brown adipose tissue (BAT) of hibernating animals and small rodents. A UCP1 ortholog also occurs in plants, and aside from its role in uncoupling respiration from ATP synthesis, thereby wasting energy, it plays a beneficial role in the plant response to several abiotic stresses, possibly by decreasing the production of reactive oxygen species (ROS) and regulating cellular redox homeostasis. However, the molecular mechanisms by which UCP1 is associated with stress tolerance remain unknown. Here, we report that the overexpression of UCP1 increases mitochondrial biogenesis, increases the uncoupled respiration of isolated mitochondria, and decreases cellular ATP concentration. We observed that the overexpression of UCP1 alters mitochondrial bioenergetics and modulates mitochondrial-nuclear communication, inducing the upregulation of hundreds of nuclear- and mitochondrial-encoded mitochondrial proteins. Electron microscopy analysis showed that these metabolic changes were associated with alterations in mitochondrial number, area and morphology. Surprisingly, UCP1 overexpression also induces the upregulation of hundreds of stress-responsive genes, including some involved in the antioxidant defense system, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione-S-transferase (GST). As a consequence of the increased UCP1 activity and increased expression of oxidative stress-responsive genes, the UCP1-overexpressing plants showed reduced ROS accumulation. These beneficial metabolic effects may be responsible for the better performance of UCP1-overexpressing lines in low pH, high salt, high osmolarity, low temperature, and oxidative stress conditions. Overexpression of UCP1 in the mitochondrial inner membrane induced increased uncoupling respiration, decreased ROS accumulation under abiotic stresses, and diminished cellular ATP content. These events may have triggered the expression of mitochondrial and stress-responsive genes in a coordinated manner. Because these metabolic alterations did not impair plant growth and development, UCP1 overexpression can potentially be used to create crops better adapted to abiotic stress conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human bocavirus 1 (HBoV1) is associated with respiratory infections worldwide, mainly in children. Similar to other parvoviruses, it is believed that HBoV1 can persist for long periods of time in humans, probably through maintaining concatemers of the virus single-stranded DNA genome in the nuclei of infected cells. Recently, HBoV-1 was detected in high rates in adenoid and palatine tonsils samples from patients with chronic adenotonsillar diseases, but nothing is known about the virus replication levels in those tissues. A 3-year prospective hospital-based study was conducted to detect and quantify HBoV1 DNA and mRNAs in samples of the adenoids (AD), palatine tonsils (PT), nasopharyngeal secretions (NPS), and peripheral blood (PB) from patients undergoing tonsillectomy for tonsillar hypertrophy or recurrent tonsillitis. HBoV1 was detected in 25.3% of the AD samples, while the rates of detection in the PT, NPS, and PB samples were 7.2%, 10.5%, and 1.7%, respectively. The viral loads were higher in AD samples, and 27.3% of the patients with HBoV had mRNA detectable in this tissue. High viral loads and detectable mRNA in the AD were associated with HBoV1 detection in the other sample sites. The adenoids are an important site of HBoV1 replication and persistence in children with tonsillar hypertrophy. The adenoids contain high HBoV1 loads and are frequently positive for HBoV mRNA, and this is associated with the detection of HBoV1 in secretions.