23 resultados para Target Organ Damage.
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Resistant hypertension (RHTN) includes patients with controlled blood pressure (BP) (CRHTN) and uncontrolled BP (UCRHTN). In fact, RHTN patients are more likely to have target organ damage (TOD), and resistin, leptin and adiponectin may affect BP control in these subjects. We assessed the relationship between adipokines levels and arterial stiffness, left ventricular hypertrophy (LVH) and microalbuminuria (MA). This cross-sectional study included CRHTN (n=51) and UCRHTN (n=38) patients for evaluating body mass index, ambulatory blood pressure monitoring, plasma adiponectin, leptin and resistin concentrations, pulse wave velocity (PWV), MA and echocardiography. Leptin and resistin levels were higher in UCRHTN, whereas adiponectin levels were lower in this same subgroup. Similarly, arterial stiffness, LVH and MA were higher in UCRHTN subgroup. Adiponectin levels negatively correlated with PWV (r=-0.42, P<0.01), and MA (r=-0.48, P<0.01) only in UCRHTN. Leptin was positively correlated with PWV (r=0.37, P=0.02) in UCRHTN subgroup, whereas resistin was not correlated with TOD in both subgroups. Adiponectin is associated with arterial stiffness and renal injury in UCRHTN patients, whereas leptin is associated with arterial stiffness in the same subgroup. Taken together, our results showed that those adipokines may contribute to vascular and renal damage in UCRHTN patients.
Resumo:
Resistant hypertension (RH) is a multifactorial disease, frequently associated with obesity and characterized by blood pressure above goal (140/90 mm Hg) despite the concurrent use of ≥3 antihypertensive drugs of different classes. The mechanisms of obesity-related hypertension include, among others, aldosterone excess and inflammatory adipokines, which have demonstrated a significant role in the pathogenesis of metabolic syndrome and RH. This review aims to summarize recent studies on the role of the adipokines leptin, resistin, and adiponectin in the pathophysiology of RH and target-organ damage associated with this condition. The deregulation of adipokine levels has been associated with clinical characteristics frequently recognized in RH such as diabetes, hyperactivity of sympathetic and renin-angiotensin-aldosterone systems, and vascular and renal damage. Strategies to regulate adipokines may be promising for the management of RH and some clinical implications must be considered when managing controlled and uncontrolled patients with RH.
Resumo:
Adipokines are hormones produced by adipocytes and have been involved in multiple pathologic pathways, including inflammatory and cardiovascular complications in essential hypertension. Arterial stiffness is a frequent vascular complication that represents increased cardiovascular risk in hypertensive patients. Adipokines, such as adiponectin, leptin and resistin, might be implicated in hypertension, as well as in vascular alterations associated with this condition. Arterial stiffness has proven to be a predictor of cardiovascular events. Obesity and target-organ damage such as arterial stiffness are features associated with hypertension. This review aims to update the association between adipokines and arterial stiffness in essential and resistant hypertension (RHTN).
Resumo:
Increased levels of inflammatory biomarkers such as interleukin-6 (IL-6), 10 (IL-10), 1β (IL-1β), tumor necrosis factor-α (TNF-α) high-sensitivity C-reactive protein (hs-CRP) are associated with arterial stiffness in hypertension. Indeed, resistant hypertension (RHTN) leads to unfavorable prognosis attributed to poor blood pressure (BP) control and target organ damage. This study evaluated the potential impact of inflammatory biomarkers on arterial stiffness in RHTN. In this cross-sectional study, 32 RHTN, 20 mild hypertensive (HTN) and 20 normotensive (NT) patients were subjected to office BP and arterial stiffness measurements assessed by pulse wave velocity (PWV). Inflammatory biomarkers were measured in plasma samples. PWV was increased in RHTN compared with HTN and NT (p < 0.05). TNF-α levels were significantly higher in RHTN and HTN than NT patients. No differences in IL-6 levels were observed. RHTN patients had a higher frequency of subjects with increased levels of IL-10 and IL-1β compared with HTN and NT patients. Finally, IL-1β was independently associated with PWV (p < 0.001; R(2) = 0.5; β = 0.077). RHTN subjects have higher levels of inflammatory cytokines (TNF-α, IL-1β and IL-10) as well as increased arterial stiffness, and detectable IL-1β levels are associated arterial stiffness. These findings suggest that inflammation plays a possible role in the pathophysiology of RHTN.
Resumo:
Hypertension is the most prevalent and significant modifiable risk factor for coronary heart disease. A portion of patients with uncontrolled hypertension are considered to have resistant hypertension (RHTN). Myocardial ischemia incidence increases along with blood pressure (BP) levels. However, the prevalence of myocardial ischemia in patients with RHTN, as well as the factors associated with it, is unknown. We enrolled 129 patients with true RHTN regularly followed in our specialty hypertension clinic and evaluated then by resting and dipyridamole pharmacological stress myocardial perfusion scintigraphy. Patients were then divided into 2 groups: those with (I-RHTN; n = 36) and those without (NI-RHTN; n = 93) myocardial ischemia. Echocardiography, 24-hour ambulatory BP monitoring (ABPM), and flow mediated dilation (FMD) were also evaluated. Thirty six (28%) patients had myocardial ischemia. There was no difference between groups regarding age, sex, biochemical parameters, office, and 24-hour ABPM levels. Patients in the I-RHTN group were more likely diabetic (31% vs. 11%; P < 0.05) and obese (75% vs. 40%; P < 0.001). Adjusting for age and body mass index, multiple logistic regression showed that diabetes (odds ratio (OR) = 6.5; 95% confidence interval (CI) = 1.06-40.14; P = 0.04), FMD (OR = 0.18; 95% CI = 0.07-0.41; P < 0.001), heart rate (OR = 1.23; 95% CI = 1.11-1.36; P < 0.001), left ventricular mass index (OR = 1.02; 95% CI = 1.01-1.04; P = 0.04), and microalbuminuria (OR = 1.02; 95% CI = 1.01-1.04; P = 0.002) were independent predictors of ischemia. In conclusion, there is a high prevalence of myocardial ischemia in patients with RHTN. Increased microalbuminuria, heart rate, endothelial dysfunction, and left ventricular mass can be useful to guide the investigation for myocardial ischemia in these high risk patients.
Resumo:
Introductions: In the care of hypertension, it is important that health professionals possess available tools that allow evaluating the impairment of the health-related quality of life, according to the severity of hypertension and the risk for cardiovascular events. Among the instruments developed for the assessment of health-related quality of life, there is the Mini-Cuestionario of Calidad de Vida en la Hipertensión Arterial (MINICHAL) recently adapted to the Brazilian culture. Objective: To estimate the validity of known groups of the Brazilian version of the MINICHAL regarding the classification of risk for cardiovascular events, symptoms, severity of dyspnea and target-organ damage. Methods: Data of 200 hypertensive outpatients concerning sociodemographic and clinical information and health-related quality of life were gathered by consulting the medical charts and the application of the Brazilian version of MINICHAL. The Mann-Whitney test was used to compare health-related quality of life in relation to symptoms and target-organ damage. The Kruskal-Wallis test and ANOVA with ranks transformation were used to compare health-related quality of life in relation to the classification of risk for cardiovascular events and intensity of dyspnea, respectively. Results: The MINICHAL was able to discriminate health-related quality of life in relation to symptoms and kidney damage, but did not discriminate health-related quality of life in relation to the classification of risk for cardiovascular events. Conclusion: The Brazilian version of the MINICHAL is a questionnaire capable of discriminating differences on the health‑related quality of life regarding dyspnea, chest pain, palpitation, lipothymy, cephalea and renal damage.Fundamento: No cuidado ao hipertenso, é importante que o profissional de saúde disponha de ferramentas que possibilitem avaliar o comprometimento da qualidade de vida relacionada à saúde, de acordo com a gravidade da hipertensão e o risco para eventos cardiovasculares. Dentre os instrumentos criados para avaliação da qualidade de vida relacionada à saúde, destaca-se o Mini-Cuestionario de Calidad de Vida en la Hipertensión Arterial (MINICHAL), recentemente adaptado para a cultura brasileira. Objetivo: Estimar a validade de grupos conhecidos da versão brasileira do MINICHAL em relação à classificação de risco para eventos cardiovasculares, sintomas, intensidade da dispneia e lesões de órgãos-alvo. Métodos: Foram investigados 200 hipertensos em seguimento ambulatorial, cujos dados sociodemográficos, clínicos e de qualidade de vida relacionada à saúde foram obtidos por meio de consulta ao prontuário e da aplicação da versão brasileira do MINICHAL. O teste de Mann-Whitney foi utilizado para comparar qualidade de vida relacionada à saúde em relação aos sintomas e às lesões de órgãos-alvo. Teste de Kruskal-Wallis e ANOVA com transformação nos ranks foram empregados para comparar qualidade de vida relacionada à saúde em relação à classificação de risco para eventos cardiovasculares e intensidade da dispneia, respectivamente. Resultados: O MINICHAL discriminou qualidade de vida relacionada à saúde em relação aos sintomas e dano renal (lesões de órgãos-alvo), porém não discriminou qualidade de vida relacionada à saúde em relação à classificação de risco para eventos cardiovasculares. Conclusão: A versão brasileira do MINICHAL é um instrumento capaz de discriminar diferenças na qualidade de vida relacionada à saúde em relação aos sintomas de dispneia, precordialgia, palpitação, lipotímia, cefaleia e presença de dano renal.
Resumo:
Sickle cell disease (SCD) is a genetic disorder characterized by the production of abnormal hemoglobin that polymerizes at low oxygen concentrations, causing the erythrocyte to adopt a sickle-shaped morphology. SCD pathophysiology is extremely complex and can lead to numerous clinical complications, including painful vaso-occlusive crises (VOC), end-organ damage, and a shortened lifespan. An impressive number of investigational drugs are currently in early stages of clinical development with prospects for use either as chronic therapies to reduce VOC frequency and end-organ damage in SCD or for use at the time of VOC onset. Many of these agents have been developed using a pathophysiological-based approach to SCD, targeting one or more of the mechanisms that contribute to the disease process. It is plausible that a multi-drug approach to treating the disease will evolve in the coming years, whereby hydroxyurea (HU) (the only drug currently FDA-approved for SCD) is used in combination with drugs that amplify nitric oxide signaling and/or counteract hemolytic effects, platelet activation and inflammation.
Resumo:
Chronic ethanol consumption leads to reproductive damages, since it can act directly in the tissues or indirectly, causing a hormonal imbalance. Prostate is a hormone-dependent gland and, consequently, susceptible to ethanol. The potential of testosterone therapy in the ethanol-related disorders was investigated in the prostate microenvironment. UChB rats aged 90 days were divided into 2 experimental groups (n=20): C: drinking water only and EtOH: drinking 10% (v/v) ethanol at >2 g/kg body weight/day+water. At 150 days old, 10 rats from each group received subcutaneous injections of testosterone cypionate (5 mg/kg body weight) diluted in corn oil every other day for 4 weeks, constituting T and EtOH+T, while the remaining animals received corn oil as vehicle. Animals were euthanized at 180 days old, by decapitation. Blood was collected to obtain hormone concentrations and ventral prostate was dissected and processed for light microscope and molecular analyses. Ventral prostate weight, plasma testosterone and DHT and intraprostatic testosterone concentrations were increased after testosterone treatment. Plasma estradiol level was reduced in the EtOH+T. Inflammatory foci, metaplasia and epithelial atrophy were constantly found in the prostate of EtOH and were not observed after hormonal therapy. No differences were found in the expression of AR, ERβ and DACH-1. Additionally, testosterone treatment down-regulated ERα and increased the e-cadherin and α-actinin immunoreactivities. Testosterone was able to reverse damages caused by ethanol consumption in the prostate microenvironment and becomes a possible target to be investigated to ethanol-related disorders.
Resumo:
Lutein (LT) is a carotenoid obtained by diet and despite its antioxidant activity had been biochemically reported, few studies are available concerning its influence on the expression of antioxidant genes. The expression of 84 genes implicated in antioxidant defense was quantified using quantitative reverse transcription polymerase chain reaction array. DNA damage was measured by comet assay and glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) were quantified as biochemical parameters of oxidative stress in mouse kidney and liver. cDDP treatment reduced concentration of GSH and increased TBARS, parameters that were ameliorated in treatment associated with LT. cDDP altered the expression of 32 genes, increasing the expression of GPx2, APC, Nqo1 and CCs. LT changed the expression of 37 genes with an induction of 13 mainly oxygen transporters. In treatments associating cDDP and LT, 30 genes had their expression changed with a increase of the same genes of the cDDP treatment alone. These results suggest that LT might act scavenging reactive species and also inducing the expression of genes related to a better antioxidant response, highlighting the improvement of oxygen transport. This improved redox state of the cell through LT treatment could be related to the antigenotoxic and antioxidant effects observed.
Resumo:
Differential gene expression analysis by suppression subtractive hybridization with correlation to the metabolic pathways involved in chronic myeloid leukemia (CML) may provide a new insight into the pathogenesis of CML. Among the overexpressed genes found in CML at diagnosis are SEPT5, RUNX1, MIER1, KPNA6 and FLT3, while PAN3, TOB1 and ITCH were decreased when compared to healthy volunteers. Some genes were identified and involved in CML for the first time, including TOB1, which showed a low expression in patients with CML during tyrosine kinase inhibitor treatment with no complete cytogenetic response. In agreement, reduced expression of TOB1 was also observed in resistant patients with CML compared to responsive patients. This might be related to the deregulation of apoptosis and the signaling pathway leading to resistance. Most of the identified genes were related to the regulation of nuclear factor κB (NF-κB), AKT, interferon and interleukin-4 (IL-4) in healthy cells. The results of this study combined with literature data show specific gene pathways that might be explored as markers to assess the evolution and prognosis of CML as well as identify new therapeutic targets.
Resumo:
15
Resumo:
It is well known that long term use of shampoo causes damage to human hair. Although the Lowry method has been widely used to quantify hair damage, it is unsuitable to determine this in the presence of some surfactants and there is no other method proposed in literature. In this work, a different method is used to investigate and compare the hair damage induced by four types of surfactants (including three commercial-grade surfactants) and water. Hair samples were immersed in aqueous solution of surfactants under conditions that resemble a shower (38 °C, constant shaking). These solutions become colored with time of contact with hair and its UV-vis spectra were recorded. For comparison, the amount of extracted proteins from hair by sodium dodecyl sulfate (SDS) and by water were estimated by the Lowry method. Additionally, non-pigmented vs. pigmented hair and also sepia melanin were used to understand the washing solution color and their spectra. The results presented herein show that hair degradation is mostly caused by the extraction of proteins, cuticle fragments and melanin granules from hair fiber. It was found that the intensity of solution color varies with the charge density of the surfactants. Furthermore, the intensity of solution color can be correlated to the amount of proteins quantified by the Lowry method as well as to the degree of hair damage. UV-vis spectrum of hair washing solutions is a simple and straightforward method to quantify and compare hair damages induced by different commercial surfactants.
Resumo:
Monte Carlo track structures (MCTS) simulations have been recognized as useful tools for radiobiological modeling. However, the authors noticed several issues regarding the consistency of reported data. Therefore, in this work, they analyze the impact of various user defined parameters on simulated direct DNA damage yields. In addition, they draw attention to discrepancies in published literature in DNA strand break (SB) yields and selected methodologies. The MCTS code Geant4-DNA was used to compare radial dose profiles in a nanometer-scale region of interest (ROI) for photon sources of varying sizes and energies. Then, electron tracks of 0.28 keV-220 keV were superimposed on a geometric DNA model composed of 2.7 × 10(6) nucleosomes, and SBs were simulated according to four definitions based on energy deposits or energy transfers in DNA strand targets compared to a threshold energy ETH. The SB frequencies and complexities in nucleosomes as a function of incident electron energies were obtained. SBs were classified into higher order clusters such as single and double strand breaks (SSBs and DSBs) based on inter-SB distances and on the number of affected strands. Comparisons of different nonuniform dose distributions lacking charged particle equilibrium may lead to erroneous conclusions regarding the effect of energy on relative biological effectiveness. The energy transfer-based SB definitions give similar SB yields as the one based on energy deposit when ETH ≈ 10.79 eV, but deviate significantly for higher ETH values. Between 30 and 40 nucleosomes/Gy show at least one SB in the ROI. The number of nucleosomes that present a complex damage pattern of more than 2 SBs and the degree of complexity of the damage in these nucleosomes diminish as the incident electron energy increases. DNA damage classification into SSB and DSB is highly dependent on the definitions of these higher order structures and their implementations. The authors' show that, for the four studied models, different yields are expected by up to 54% for SSBs and by up to 32% for DSBs, as a function of the incident electrons energy and of the models being compared. MCTS simulations allow to compare direct DNA damage types and complexities induced by ionizing radiation. However, simulation results depend to a large degree on user-defined parameters, definitions, and algorithms such as: DNA model, dose distribution, SB definition, and the DNA damage clustering algorithm. These interdependencies should be well controlled during the simulations and explicitly reported when comparing results to experiments or calculations.
Resumo:
The phytopathogenic fungus Moniliophthora perniciosa (Stahel) Aime & Philips-Mora, causal agent of witches' broom disease of cocoa, causes countless damage to cocoa production in Brazil. Molecular studies have attempted to identify genes that play important roles in fungal survival and virulence. In this study, sequences deposited in the M. perniciosa Genome Sequencing Project database were analyzed to identify potential biological targets. For the first time, the ergosterol biosynthetic pathway in M. perniciosa was studied and the lanosterol 14α-demethylase gene (ERG11) that encodes the main enzyme of this pathway and is a target for fungicides was cloned, characterized molecularly and its phylogeny analyzed. ERG11 genomic DNA and cDNA were characterized and sequence analysis of the ERG11 protein identified highly conserved domains typical of this enzyme, such as SRS1, SRS4, EXXR and the heme-binding region (HBR). Comparison of the protein sequences and phylogenetic analysis revealed that the M. perniciosa enzyme was most closely related to that of Coprinopsis cinerea.
Resumo:
The 2005 National Institutes of Health (NIH) Consensus Conference proposed new criteria for diagnosing and scoring the severity of chronic graft-versus-host disease (GVHD). The 2014 NIH consensus maintains the framework of the prior consensus with further refinement based on new evidence. Revisions have been made to address areas of controversy or confusion, such as the overlap chronic GVHD subcategory and the distinction between active disease and past tissue damage. Diagnostic criteria for involvement of mouth, eyes, genitalia, and lungs have been revised. Categories of chronic GVHD should be defined in ways that indicate prognosis, guide treatment, and define eligibility for clinical trials. Revisions have been made to focus attention on the causes of organ-specific abnormalities. Attribution of organ-specific abnormalities to chronic GVHD has been addressed. This paradigm shift provides greater specificity and more accurately measures the global burden of disease attributed to GVHD, and it will facilitate biomarker association studies.