6 resultados para Surface metal matrix composite

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Friction and triboelectrification of materials show a strong correlation during sliding contacts. Friction force fluctuations are always accompanied by two tribocharging events at metal-insulator [e.g., polytetrafluoroethylene (PTFE)] interfaces: injection of charged species from the metal into PTFE followed by the flow of charges from PTFE to the metal surface. Adhesion maps that were obtained by atomic force microscopy (AFM) show that the region of contact increases the pull-off force from 10 to 150 nN, reflecting on a resilient electrostatic adhesion between PTFE and the metallic surface. The reported results suggest that friction and triboelectrification have a common origin that must be associated with the occurrence of strong electrostatic interactions at the interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the effect of the incorporation of an iodonium salt in experimental composites, on the bond strength of metallic brackets bonded to bovine teeth. Two hundred and seventy bovine teeth were embedded in self-curing acrylic resin and divided into 18 groups (n=15), according to the experimental composite with an iodonium salt at molar concentrations 0 (control), 0.5, or 1%; the light-activation times (8, 20 and 40 s); and the storage times (10 min or 24 h). Metallic brackets were fixed on the tooth surface using experimental composites. Photoactivation was performed with a quartz-tungsten-halogen light-curing unit curing unit for 8, 20 and 40 s. The specimens were stored in distilled water at 37 °C for 10 min or 24 h and submitted to bond strength test at 0.5 mm/min. The data were subjected to three-way ANOVA and Tukey's test (α=0.05). The Adhesive Remnant Index (ARI) was used to classify the failure modes. The shear bond strengths (MPa) at 10 min for light-activation times of 8, 20 and 40 s were: G1 - 4.6, 6.9 and 7.1; G2 - 8.1, 9.2 and 9.9; G3 - 9.1, 10.4 and 10.7; and at 24 h were: G1 - 10.9, 11.1 and 11.7; G2 - 11.8, 12.7 and 14.2; G3 - 12.1, 14.4 and 15.8. There was a predominance of ARI score 3 for groups with 10 min storage time, and ARI score 2 for groups with 24 h storage time. In conclusion, the addition of iodonium salt (C05 and C1) to the experimental composite may increase the bond strength of brackets to bovine enamel using reduced light exposure times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To evaluate the influence of light-activation of second, third and fourth increments on degree of conversion (DC) and microhardness (KHN) of the top (T) and bottom (B) surface of the first increment. Forty samples (n = 5) were prepared. In groups 1-4, after each increment light-activation (multiple irradiation), T and B of the first increment were measured in DC and KHN. In groups 5-8, only the first increment was made (single irradiation) and measurements of DC and KHN were taken at 15 min intervals. The light-activation modes were (XL) 500 mW/cm(2) × 38 s (G1/G5); (S) 1000 mW/cm(2) × 19 s (G2/G6), (HP) 1400 mW/cm(2) × 14 s (G3/G7); (PE) 3200 mW/cm(2) × 6 s (G4/G8). Data for DC and KHN were analyzed separately by using PROC MIXED for repeated measures and Tukey-Kramer test (α = 0.05). For KHN, B showed lower values than T. PE resulted in lower values of KHN in B surface. For single and multiple irradiations, T and B of first measurement showed the lowest KHN and the fourth measurement showed the highest, with significant difference between them. For single irradiation, first and second increments presented similar KHN, different from the third and fourth increment, which did not differ between them. For multiple irradiations, the second light-activation resulted in KHN similar to first, third and fourth increments. For DC, except QTH, T presented higher DC than B. The light-activation of successive increments was not able to influence the KHN and DC of the first increment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immobilized Metal Ion Affinity Cromatography - IMAC - is a group-specific based adsorption applied to the purification and structure-function studies of proteins and nucleic acids. The adsorption is based on coordination between a metal ion chelated on the surface of a solid matrix and electron donor groups at the surface of the biomolecule. IMAC is a highly selective, low cost, and easily scaled-up technique being used in research and commercial operations. A separation process can be designed for a specific molecule by just selecting an appropriate metal ion, chelating agent, and operational conditions such as pH, ionic strength, and buffer type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To evaluate the ocular surface toxicity of two nitric oxide donors in ex vivo and in vivo animal models: S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylcysteine (SNAC) in a hydroxypropyl methylcellulose (HPMC) matrix at final concentrations 1.0 and 10.0 mM. METHODS: Ex vivo GSNO and SNAC toxicities were clinically and histologically analyzed using freshly excised pig eyeballs. In vivo experiments were performed with 20 albino rabbits which were randomized into 4 groups (5 animals each): Groups 1 and 2 received instillations of 150 µL of aqueous HPMC solution containing GSNO 1.0 and 10.0 mM, respectively, in one of the eyes; Groups 3 and 4 received instillations of 150 µL of aqueous HPMC solution-containing SNAC 1.0 and 10.0 mM, respectively, in one of the eyes. The contralateral eyes in each group received aqueous HPMC as a control. All animals underwent clinical evaluation on a slit lamp and the eyes were scored according to a modified Draize eye test and were histologically analyzed. RESULTS: Pig eyeballs showed no signs of perforation, erosion, corneal opacity or other gross damage. These findings were confirmed by histological analysis. There was no difference between control and treated rabbit eyes according to the Draize eye test score in all groups (p>0.05). All formulations showed a mean score under 1 and were classified as non-irritating. There was no evidence of tissue toxicity in the histological analysis in all animals. CONCLUSION: Aqueous HPMC solutions containing GSNO and SNAC at concentrations up to 10.0 mM do not induce ocular irritation.