3 resultados para Solo - Efeito do fósforo
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
The objectives of this work was to estimate the number of soil subsamples considering the classical statistics and geostatistics and determine the spatial variability of soil fertility attributes of an Ultisol, with clay texture, in an area of regenerating natural vegetation in Alegre - ES. Soil samples were collected in a depth of 0.0-0.2 m, at the crossing points of a regular grid, comprising a total of 64 points located at 10 m-intervals. The area presented low fertility soil. Considering a variation of 5% around the mean in the classic statistics, it is necessary a larger number of samples in relation to geostatistics. All the chemical attributes showed moderate to high spatial dependence, except for the effective cation exchange capacity (CECe), which showed pure nugget effect. The spherical semivariogram model gave the best fit to the data. Isoline maps allowed visualizing the differentiated spatial distribution of the contents of soil chemical attributes.
Resumo:
The covering of the soil is an agricultural practice that intends to control the harmful herbs, to reduce the losses of water by evaporation of the soil, and to facilitate the harvest and the commercialization, once the product is cleaner and healthier. However, when the soil is covered important microclimatic parameters are also altered, and consequently the germination of seeds, the growth of roots, the absorption of water and nutrients, the metabolic activity of the plants and the carbohydrates storage. The current trial intended to evaluate the effect of soil covering with blue colored film on consumptive water-use in a lettuce crop (Lactuca sativa, L.). The experiment was carried out in a plastic greenhouse in Araras - São Paulo State, Brazil from March 3rd, 2001 to May 5th, 2001. The consumptive water-use was measured through two weighing lysimeter installed inside the greenhouse. Crop spacing was 0.25 m x 0.25 m and the color of the film above soil was blue. Leaf area index (IAF), was measured six times (7; 14; 21; 28; 35; 40 days after transplant) and the water-use efficiency (EU) was measured at the end. The experimental design was subdivided portions with two treatments, bare soil and covered soil. The average consumptive water-use was 4.17 mm day-1 to the bare soil treatment and 3.11 mm day-1 to the covered soil treatment. The final leaf area index was 25.23 to the bare soil treatment and 24.39 to the covered soil treatment, and there was no statistical difference between then.
Resumo:
The objective of this study was to quantify the effect of plonk on compressive behavior and mechanical attributes such as consistency, optimum moisture for compaction and maximum density of a Red-Yellow Latosol (Oxisol) to evaluate the effect of plonk and compaction state in splashed particles, from Lavras (MG) region. The plonk was obtained from an artisanal sugarcane brandy alembic. Undisturbed and disturbed soil samples were collected at 0 to 3 cm and 60 to 63 cm depths. Disturbed soil samples were used for soil characterization, determination of consistence limits and Normal Proctor essay after material incubation with plonk. Undisturbed soil samples were saturated with plonk or distilled water (control) during 48 hours for testing the compressibility and resistance to splash by using simulated rainfall. The plonk altered the consistence limits of studied layers. For the 0-3 cm layer, the plonk reduced the friable range, and for the 60-63 cm layer the effect was in the opposite direction. For both layers, the plonk increased Dmax and decreased Uoptimum. Regardless of the plonk treatment, both layers presented the same load support capacity. The compaction degree of samples influenced the splash erosion. The increase of the applied pressure over the samples resulted in increase of splash material quantity. At the 60-63 cm layer, the plonk treatment reduced the splash material quantity by increasing the applied pressure, mainly when the samples were at field capacity.