2 resultados para Shrna
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
ANKHD1 is highly expressed in human acute leukemia cells and potentially regulates multiple cellular functions through its ankyrin-repeat domains. In order to identify interaction partners of the ANKHD1 protein and its role in leukemia cells, we performed a yeast two-hybrid system screen and identified SIVA, a cellular protein known to be involved in proapoptotic signaling pathways. The interaction between ANKHD1 and SIVA was confirmed by co-imunoprecipitation assays. Using human leukemia cell models and lentivirus-mediated shRNA approaches, we showed that ANKHD1 and SIVA proteins have opposing effects. While it is known that SIVA silencing promotes Stathmin 1 activation, increased cell migration and xenograft tumor growth, we showed that ANKHD1 silencing leads to Stathmin 1 inactivation, reduced cell migration and xenograft tumor growth, likely through the inhibition of SIVA/Stathmin 1 association. In addition, we observed that ANKHD1 knockdown decreases cell proliferation, without modulating apoptosis of leukemia cells, while SIVA has a proapoptotic function in U937 cells, but does not modulate proliferation in vitro. Results indicate that ANKHD1 binds to SIVA and has an important role in inducing leukemia cell proliferation and migration via the Stathmin 1 pathway. ANKHD1 may be an oncogene and participate in the leukemia cell phenotype.
Resumo:
Mitochondria are involved in energy supply, signaling, cell death and cellular differentiation and have been implicated in several human diseases. Neks (NIMA-related kinases) represent a family of mammal protein kinases that play essential roles in cell-cycle progression, but other functions have recently been related. A yeast two-hybrid (Y2H) screen was performed to identify and characterize Nek5 interaction partners and the mitochondrial proteins Cox11, MTX-2 and BCLAF1 were retrieved. Apoptosis assay showed protective effects of stable hNek5 expression from Hek293-T's cell death after thapsigargin treatment (2μM). Nek5 silenced cells as well as cells expressing a kinase dead version of Nek5, displayed an increase in ROS formation after 4h of thapsigargin treatment. Mitochondrial respiratory chain activity was found decreased upon stable hNek5expression. Cells silenced for hNek5 on the other hand presented 1.7 fold increased basal rates of respiration, especially at the electrons transfer steps from TMPD to cytochrome c and at the complex II. In conclusion, our data suggest for the first time mitochondrial localization and functions for Nek5 and its participation in cell death and cell respiration regulation. Stable expression of hNek5 in Hek293T cells resulted in enhanced cell viability, decreased cell death and drug resistance, while depletion of hNek5by shRNA overcame cancer cell drug resistance and induced apoptosis in vitro. Stable expression of hNek5 also inhibits thapsigargin promoted apoptosis and the respiratory chain complex IV in HEK293T cells.