34 resultados para Saad Investments
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Characterized for the first time in erythrocytes, phosphatidylinositol phosphate kinases (PIP kinases) belong to a family of enzymes that generate various lipid messengers and participate in several cellular processes, including gene expression regulation. Recently, the PIPKIIα gene was found to be differentially expressed in reticulocytes from two siblings with hemoglobin H disease, suggesting a possible relationship between PIPKIIα and the production of globins. Here, we investigated PIPKIIα gene and protein expression and protein localization in hematopoietic-derived cells during their differentiation, and the effects of PIPKIIα silencing on K562 cells. PIPKIIα silencing resulted in an increase in α and γ globins and a decrease in the proliferation of K562 cells without affecting cell cycle progression and apoptosis. In conclusion, using a cell line model, we showed that PIPKIIα is widely expressed in hematopoietic-derived cells, is localized in their cytoplasm and nucleus, and is upregulated during erythroid differentiation. We also showed that PIPKIIα silencing can induce α and γ globin expression and decrease cell proliferation in K562 cells.
Resumo:
Bone marrow is organized in specialized microenvironments known as 'marrow niches'. These are important for the maintenance of stem cells and their hematopoietic progenitors whose homeostasis also depends on other cell types present in the tissue. Extrinsic factors, such as infection and inflammatory states, may affect this system by causing cytokine dysregulation (imbalance in cytokine production) and changes in cell proliferation and self-renewal rates, and may also induce changes in the metabolism and cell cycle. Known to relate to chronic inflammation, obesity is responsible for systemic changes that are best studied in the cardiovascular system. Little is known regarding the changes in the hematopoietic system induced by the inflammatory state carried by obesity or the cell and molecular mechanisms involved. The understanding of the biological behavior of hematopoietic stem cells under obesity-induced chronic inflammation could help elucidate the pathophysiological mechanisms involved in other inflammatory processes, such as neoplastic diseases and bone marrow failure syndromes.
Resumo:
The aim of the study was to analyze the frequency of epidermal growth factor receptor (EGFR) mutations in Brazilian non-small cell lung cancer patients and to correlate these mutations with response to benefit of platinum-based chemotherapy in non-small cell lung cancer (NSCLC). Our cohort consisted of prospective patients with NSCLCs who received chemotherapy (platinum derivates plus paclitaxel) at the [UNICAMP], Brazil. EGFR exons 18-21 were analyzed in tumor-derived DNA. Fifty patients were included in the study (25 with adenocarcinoma). EGFR mutations were identified in 6/50 (12 %) NSCLCs and in 6/25 (24 %) adenocarcinomas; representing the frequency of EGFR mutations in a mostly self-reported White (82.0 %) southeastern Brazilian population of NSCLCs. Patients with NSCLCs harboring EGFR exon 19 deletions or the exon 21 L858R mutation were found to have a higher chance of response to platinum-paclitaxel (OR 9.67 [95 % CI 1.03-90.41], p = 0.047). We report the frequency of EGFR activating mutations in a typical southeastern Brazilian population with NSCLC, which are similar to that of other countries with Western European ethnicity. EGFR mutations seem to be predictive of a response to platinum-paclitaxel, and additional studies are needed to confirm or refute this relationship.
Resumo:
Protocols for the generation of dendritic cells (DCs) using serum as a supplementation of culture media leads to reactions due to animal proteins and disease transmissions. Several types of serum-free media (SFM), based on good manufacture practices (GMP), have recently been used and seem to be a viable option. The aim of this study was to evaluate the results of the differentiation, maturation, and function of DCs from Acute Myeloid Leukemia patients (AML), generated in SFM and medium supplemented with autologous serum (AS). DCs were analyzed by phenotype characteristics, viability, and functionality. The results showed the possibility of generating viable DCs in all the conditions tested. In patients, the X-VIVO 15 medium was more efficient than the other media tested in the generation of DCs producing IL-12p70 (p=0.05). Moreover, the presence of AS led to a significant increase of IL-10 by DCs as compared with CellGro (p=0.05) and X-Vivo15 (p=0.05) media, both in patients and donors. We concluded that SFM was efficient in the production of DCs for immunotherapy in AML patients. However, the use of AS appears to interfere with the functional capacity of the generated DCs.
Resumo:
Previous results provided evidence that Cratylia mollis seed lectin (Cramoll 1,4) promotes Trypanosoma cruzi epimastigotes death by necrosis via a mechanism involving plasma membrane permeabilization to Ca(2+) and mitochondrial dysfunction due to matrix Ca(2+) overload. In order to investigate the mechanism of Ca(2+) -induced mitochondrial impairment, experiments were performed analyzing the effects of this lectin on T. cruzi mitochondrial fraction and in isolated rat liver mitochondria (RLM), as a control. Confocal microscopy of T. cruzi whole cell revealed that Cramoll 1,4 binding to the plasma membrane glycoconjugates is followed by its internalization and binding to the mitochondrion. Electrical membrane potential (∆Ψm ) of T. cruzi mitochondrial fraction suspended in a reaction medium containing 10 μM Ca(2+) was significantly decreased by 50 μg/ml Cramoll 1,4 via a mechanism insensitive to cyclosporine A (CsA, membrane permeability transition (MPT) inhibitor), but sensitive to catalase or 125 mM glucose. In RLM suspended in a medium containing 10 μM Ca(2+) this lectin, at 50 μg/ml, induced increase in the rate of hydrogen peroxide release, mitochondrial swelling, and ∆Ψm disruption. All these mitochondrial alterations were sensitive to CsA, catalase, and EGTA. These results indicate that Cramoll 1, 4 leads to inner mitochondrial membrane permeabilization through Ca(2+) dependent mechanisms in both mitochondria. The sensitivity to CsA in RLM characterizes this lectin as a MPT inducer and the lack of CsA effect identifies a CsA-insensitive MPT in T. cruzi mitochondria.
Resumo:
IKK epsilon (IKKε) is induced by the activation of nuclear factor-κB (NF-κB). Whole-body IKKε knockout mice on a high-fat diet (HFD) were protected from insulin resistance and showed altered energy balance. We demonstrate that IKKε is expressed in neurons and is upregulated in the hypothalamus of obese mice, contributing to insulin and leptin resistance. Blocking IKKε in the hypothalamus of obese mice with CAYMAN10576 or small interfering RNA decreased NF-κB activation in this tissue, relieving the inflammatory environment. Inhibition of IKKε activity, but not TBK1, reduced IRS-1(Ser307) phosphorylation and insulin and leptin resistance by an improvement of the IR/IRS-1/Akt and JAK2/STAT3 pathways in the hypothalamus. These improvements were independent of body weight and food intake. Increased insulin and leptin action/signaling in the hypothalamus may contribute to a decrease in adiposity and hypophagia and an enhancement of energy expenditure accompanied by lower NPY and increased POMC mRNA levels. Improvement of hypothalamic insulin action decreases fasting glycemia, glycemia after pyruvate injection, and PEPCK protein expression in the liver of HFD-fed and db/db mice, suggesting a reduction in hepatic glucose production. We suggest that IKKε may be a key inflammatory mediator in the hypothalamus of obese mice, and its hypothalamic inhibition improves energy and glucose metabolism.
Resumo:
Leg ulcers represent a particularly disabling complication in patients with sickle cell disease (SCD). Platelet gel (PG) is a novel therapeutic strategy used for accelerating wound healing of a wide range of tissues through the continuous release of platelet growth factors. Here, we describe the use of PG preparation according to Anitua's PRGF (preparations rich in growth factors) protocol for treating chronic nonhealing ulcers in patients with SCD. A positive response occurred in 3 patients with an area reduction of 85.7% to 100%, which occurred within 7 to 10 weeks, and a 35.2% and 20.5% of area reduction in 2 other patients, who however, had large ulcers. After calcium chloride addition, the platelet-rich plasmas demonstrated enhanced platelet-derived growth factors-BB (P < .001), transforming growth factor-β1 (P = .015), vascular endothelial growth factors (P = .03), and hepatocyte growth factors (nonsignificant) secretion. Furthermore, calcium chloride addition induced a significant decrease in platelet number (P = .0134) and there was no leukocyte detection in the PG product. These results demonstrate that PG treatment might impact the healing of leg ulcers in sickle cell disease, especially in patients with small ulcers.
Resumo:
Hypothalamic inflammation is a common feature of experimental obesity. Dietary fats are important triggers of this process, inducing the activation of toll-like receptor-4 (TLR4) signaling and endoplasmic reticulum stress. Microglia cells, which are the cellular components of the innate immune system in the brain, are expected to play a role in the early activation of diet-induced hypothalamic inflammation. Here, we use bone marrow transplants to generate mice chimeras that express a functional TLR4 in the entire body except in bone marrow-derived cells or only in bone marrow-derived cells. We show that a functional TLR4 in bone marrow-derived cells is required for the complete expression of the diet-induced obese phenotype and for the perpetuation of inflammation in the hypothalamus. In an obesity-prone mouse strain, the chemokine CX3CL1 (fractalkine) is rapidly induced in the neurons of the hypothalamus after the introduction of a high-fat diet. The inhibition of hypothalamic fractalkine reduces diet-induced hypothalamic inflammation and the recruitment of bone marrow-derived monocytic cells to the hypothalamus; in addition, this inhibition reduces obesity and protects against diet-induced glucose intolerance. Thus, fractalkine is an important player in the early induction of diet-induced hypothalamic inflammation, and its inhibition impairs the induction of the obese and glucose intolerance phenotypes.
Resumo:
Mastocytosis are myeloproliferative neoplasms commonly related to gain-of-function mutations involving the tyrosine kinase domain of KIT. We herein report a case of familial systemic mastocytosis with the rare KIT K509I germ line mutation affecting two family members: mother and daughter. In vitro treatment with imatinib, dasatinib and PKC412 reduced cell viability of primary mast cells harboring KIT K509I mutation. However, imatinib was more effective in inducing apoptosis of neoplastic mast cells. Both patients with familial systemic mastocytosis had remarkable hematological and skin improvement after three months of imatinib treatment, suggesting that it may be an effective front line therapy for patients harboring KIT K509I mutation.
Resumo:
Pyrimidine-5'-nucleotidase type I (P5'NI) deficiency is an autosomal recessive condition that causes nonspherocytic hemolytic anemia, characterized by marked basophilic stippling and pyrimidine nucleotide accumulation in erythrocytes. We herein present two African descendant patients, father and daughter, with P5'N deficiency, both born from first cousins. Investigation of the promoter polymorphism of the uridine diphospho glucuronosyl transferase 1A (UGT1A) gene revealed that the father was homozygous for the allele (TA7) and the daughter heterozygous (TA6/TA7). P5'NI gene (NT5C3) gene sequencing revealed a further change in homozygosity at amino acid position 56 (p.R56G), located in a highly conserved region. Both patients developed gallstones; however the father, who had undergone surgery for the removal of stones, had extremely severe intrahepatic cholestasis and, liver biopsy revealed fibrosis and siderosis grade III, leading us to believe that the homozygosity of the UGT1A polymorphism was responsible for the more severe clinical features in the father. Moreover, our results show how the clinical expression of hemolytic anemia is influenced by epistatic factors and we describe a new mutation in the P5'N gene associated with enzyme deficiency, iron overload, and severe gallstone formation. To our knowledge, this is the first description of P5'N deficiency in South Americans.
Resumo:
TET2, a member of the ten-eleven-translocation (TET) family genes that modify DNA by converting 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC), is located in chromosome 4q24 and is frequently mutated in myeloid malignancies. The impact of TET2 mutation on survival outcomes is still controversial; however, functional studies have proved that it is a loss-of-function mutation that impairs myeloid cell differentiation and contributes to the phenotype of myeloid neoplasia. We, herein, aimed to investigate TET2 expression in patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). A significantly decreased TET2 expression was observed in bone marrow cells from AML (n = 53) and patients with MDS (n = 64), compared to normal donors (n = 22). In MDS, TET2 expression was significantly reduced in RAEB-1/RAEB-2 compared to other WHO 2008 classifications, and a lower TET2 expression was observed at the time of MDS disease progression in four of five patients. In multivariate analysis, low TET2 expression (P = 0.03), male gender (P = 0.02), and WHO 2008 classification (P < 0.0001) were independent predictors of poorer overall survival. These results suggest that defective TET2 expression plays a role in the MDS pathophysiology and predicts survival outcomes in this disease.
Resumo:
This study proposes to investigate quercetin antitumor efficacy in vitro and in vivo, using the P39 cell line as a model. The experimental design comprised leukemic cells or xenografts of P39 cells, treated in vitro or in vivo, respectively, with quercetin; apoptosis, cell-cycle and autophagy activation were then evaluated. Quercetin caused pronounced apoptosis in P39 leukemia cells, followed by Bcl-2, Bcl-xL, Mcl-1 downregulation, Bax upregulation, and mitochondrial translocation, triggering cytochrome c release and caspases activation. Quercetin also induced the expression of FasL protein. Furthermore, our results demonstrated an antioxidant activity of quercetin. Quercetin treatment resulted in an increased cell arrest in G1 phase of the cell cycle, with pronounced decrease in CDK2, CDK6, cyclin D, cyclin E, and cyclin A proteins, decreased Rb phosphorylation and increased p21 and p27 expression. Quercetin induced autophagosome formation in the P39 cell line. Autophagy inhibition induced by quercetin with chloroquine triggered apoptosis but did not alter quercetin modulation in the G1 phase. P39 cell treatment with a combination of quercetin and selective inhibitors of ERK1/2 and/or JNK (PD184352 or SP600125, respectively), significantly decreased cells in G1 phase, this treatment, however, did not change the apoptotic cell number. Furthermore, in vivo administration of quercetin significantly reduced tumor volume in P39 xenografts and confirmed in vitro results regarding apoptosis, autophagy, and cell-cycle arrest. The antitumor activity of quercetin both in vitro and in vivo revealed in this study, point to quercetin as an attractive antitumor agent for hematologic malignancies.
Resumo:
Surgical treatment for enterocutaneous fistulas (EF) frequently fails. Cell therapy may represent a new approach to treatment. Mesenchymal stromal cells (MSCs) have high proliferative and differentiation capacity. This study aimed to investigate whether MSCs could adhere to suture filament (SF), promoting better EF healing. MSCs, 1 × 10(6), from adipose tissue (ATMSCs) were adhered to a Polyvicryl SF by adding a specific fibrin glue formulation. Adhesion was confirmed by confocal and scanning electron microscopy (SEM). A cecal fistula was created in 22 Wistar rats by incising the cecum and suturing the opening to the surgical wound subcutaneously with four separate stitches. The animals were randomly allocated to three groups: control (CG)-five animals, EF performed; injection (IG)-eight animals 1 × 10(6) ATMSCs injected around EF borders; and suture filament (SG): nine animals, sutured with 1 × 10(6) ATMSCs attached to the filaments with fibrin glue. Fistulas were photographed on the operation day and every 3 days until the 21st day and analyzed by two observers using ImageJ Software. Confocal and SEM results demonstrated ATMSCs adhered to SF (ATMSCs-SF). The average reduction size of the fistula area at 21st day was greater for the SG group (90.34%, P < 0.05) than the IG (71.80%) and CG (46.54%) groups. ATMSCs adhered to SF maintain viability and proliferative capacity. EF submitted to ATMSCs-SF procedure showed greater recovery and healing. This approach might be a new and effective tool for EF treatment.
Resumo:
Although myelodysplastic syndromes have a clear definition in theory, the morphologic dysplasia associated with ineffective hematopoiesis may be subtle and difficult to recognize and can commonly be mimicked by systemic conditions, such as infections, autoimmune disorders, nutritional deficiencies, toxic factors and non-hematological malignancies. However, myelodysplastic syndromes may truly coexist with other systemic diseases, which can be masked when the patient's symptoms are attributed exclusively to myelodysplastic syndromes without further investigation. To better illustrate this, we herein describe two cases associated with synchronous gastric cancers.
Resumo:
36