10 resultados para Reflexive vasodilation

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute phase response modifies high-density lipoprotein (HDL) into a dysfunctional particle that may favor oxidative/inflammatory stress and eNOS dysfunction. The present study investigated the impact of this phenomenon on patients presenting ST-elevation myocardial infarction (STEMI). Plasma was obtained from 180 consecutive patients within the first 24-h of onset of STEMI symptoms (D1) and after 5 days (D5). Nitrate/nitrite (NOx) and lipoproteins were isolated by gradient ultracentrifugation. The oxidizability of low-density lipoprotein incubated with HDL (HDLaoxLDL) and the HDL self-oxidizability (HDLautox) were measured after CuSO4 co-incubation. Anti-inflammatory activity of HDL was estimated by VCAM-1 secretion by human umbilical vein endothelial cells after incubation with TNF-α. Flow-mediated dilation (FMD) was assessed at the 30(th) day (D30) after STEMI. Among patients in the first tertile of admission HDL-Cholesterol (<33 mg/dL), the increment of NOx from D1 to D5 [6.7(2; 13) vs. 3.2(-3; 10) vs. 3.5(-3; 12); p = 0.001] and the FMD adjusted for multiple covariates [8.4(5; 11) vs 6.1(3; 10) vs. 5.2(3; 10); p = 0.001] were higher than in those in the second (33-42 mg/dL) or third (>42 mg/dL) tertiles, respectively. From D1 to D5, there was a decrease in HDL size (-6.3 ± 0.3%; p < 0.001) and particle number (-22.0 ± 0.6%; p < 0.001) as well as an increase in both HDLaoxLDL (33%(23); p < 0.001) and HDLautox (65%(25); p < 0.001). VCAM-1 secretion after TNF-a stimulation was reduced after co-incubation with HDL from healthy volunteers (-24%(33); p = 0.009), from MI patients at D1 (-23%(37); p = 0.015) and at D30 (-22%(24); p = 0.042) but not at D5 (p = 0.28). During STEMI, high HDL-cholesterol is associated with a greater decline in endothelial function. In parallel, structural and functional changes in HDL occur reducing its anti-inflammatory and anti-oxidant properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathological conditions associated with the impairment of nitric oxide (NO) production in the vasculature, such as Raynaud's syndrome and diabetic angiopathy, have stimulated the development of new biomaterials capable of delivering NO topically. With this purpose, we modified poly(vinyl-alcohol) (PVA) by chemically crosslinking it via esterification with mercaptosuccinic acid. This reaction allowed the casting of sulfhydrylated PVA (PVA-SH) films. Differential scanning calorimetry and X-ray diffractometry showed that the crosslinking reaction completely suppressed the crystallization of PVA, leading to a non-porous film with a homogeneous distribution of -SH groups. The remaining free hydroxyl groups in the PVA-SH network conferred partial hydrophylicity to the material, which was responsible for a swelling degree of ca. 110%. The PVA-SH films were subjected to an S-nitrosation reaction of the -SH groups, yielding a PVA containing S-nitrosothiol groups (PVA-SNO). Amperometric and chemiluminescence measurements showed that the PVA-SNO films were capable of releasing NO spontaneously after immersion in physiological medium. Laser Doppler-flowmetry, used to assess the blood flow in the dermal microcirculation, showed that the topical application of hydrated PVA-SNO films on the health skin led to a dose- and time-dependent increase of more than 5-fold in the dermal baseline blood flow in less than 10min, with a prolonged action of more than 4h during continuous application. These results show that PVA-SNO films might emerge as a new material with potential for the topical treatment of microvascular skin disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skin-wound healing is a complex and dynamic biological process involving inflammation, proliferation, and remodeling. Recent studies have shown that statins are new therapeutical options because of their actions, such as anti-inflammatory and antioxidant activity, on vasodilation, endothelial dysfunction and neoangiogenesis, which are independent of their lipid-lowering action. Our aim was to investigate the effect of atorvastatin on tissue repair after acute injury in healthy animals. Rats were divided into four groups: placebo-treated (P), topical atorvastatin-treated (AT), oral atorvastatin-treated (AO), topical and oral atorvastatin-treated (ATO). Under anesthesia, rats were wounded with an 8-mm punch in the dorsal region. Lesions were photographed on Days 0, 1, 3, 7, 10, 12, and 14 post-injury and samples taken on Days 1, 3, 7, and 14 for protein-expression analysis of insulin receptor substrate (IRS)-1, phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), glycogen synthase kinase (GSK)-3, endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF), extracellular signal-regulated kinase (ERK), interleukin (IL)-10, IL-1β, IL-6, and tumor necrosis factor (TNF)-α. Upon macroscopic examination, we observed significant reductions of lesion areas in groups AT, AO, and ATO compared to the P group. Additionally, AT and AO groups showed increased expression of IRS-1, PI3K, Akt, GSK-3, and IL-10 on Days 1 and 3 when compared with the P group. All atorvastatin-treated groups showed higher expression of IRS-1, PI3K, Akt, GSK-3, IL-10, eNOS, VEGF, and ERK on Day 7. On Days 1, 3, and 7, all atorvastatin-treated groups showed lower expression of IL-6 and TNF-α when compared with the P group. We conclude that atorvastatin accelerated tissue repair of acute lesions in rats and modulated expressions of proteins and cytokines associated with cell-growth pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide (NO)-mediated vasodilation plays a key role in gastric mucosal defense, and NO-donor drugs may protect against diseases associated with gastric mucosal blood flow (GMBF) deficiencies. In this study, we used the ex vivo gastric chamber method and Laser Doppler Flowmetry to characterize the effects of luminal aqueous NO-donor drug S-nitroso-N-acetylcysteine (SNAC) solution administration compared to aqueous NaNO2 and NaNO3 solutions (pH 7.4) on GMBF in Sprague-Dawley rats. SNAC solutions (600 μM and 12 mM) led to a rapid threefold increase in GMBF, which was maintained during the incubation of the solutions with the gastric mucosa, while NaNO2 or NaNO3 solutions (12 mM) did not affect GMBF. SNAC solutions (600 μM and 12 mM) spontaneously released NO at 37 °C at a constant rate of 0.3 or 14 nmol·mL-1·min-1, respectively, while NaNO2 (12 mM) released NO at a rate of 0.06 nmol·mL-1·min-1 and NaNO3 (12 mM) did not release NO. These results suggest that the SNAC-induced GMBF increase is due to their higher rates of spontaneous NO release compared to equimolar NaNO2 solutions. Taken together, our data indicate that oral SNAC administration is a potential approach for gastric acid-peptic disorder prevention and treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física