7 resultados para Reactivity. eng
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Pitavastatin is the newest statin available in Brazil and likely the one with fewer side effects. Thus, pitavastatin was evaluated in hypercholesterolemic rabbits in relation to its action on vascular reactivity. To assess the lowest dose of pitavastatin necessary to reduce plasma lipids, cholesterol and tissue lipid peroxidation, as well as endothelial function in hypercholesterolemic rabbits. Thirty rabbits divided into six groups (n = 5): G1 - standard chow diet; G2 - hypercholesterolemic diet for 30 days; G3 - hypercholesterolemic diet and after the 16th day, diet supplemented with pitavastatin (0.1 mg); G4 - hypercholesterolemic diet supplemented with pitavastatin (0.25 mg); G5 - hypercholesterolemic diet supplemented with pitavastatin (0.5 mg); G6 - hypercholesterolemic diet supplemented with pitavastatin (1.0 mg). After 30 days, total cholesterol, HDL, triglycerides, glucose, creatine kinase (CK), aspartate aminotransferase (AST), alanine aminotransferase (ALT) were measured and LDL was calculated. In-depth anesthesia was performed with sodium thiopental and aortic segments were removed to study endothelial function, cholesterol and tissue lipid peroxidation. The significance level for statistical tests was 5%. Total cholesterol and LDL were significantly elevated in relation to G1. HDL was significantly reduced in G4, G5 and G6 when compared to G2. Triglycerides, CK, AST, ALT, cholesterol and tissue lipid peroxidation showed no statistical difference between G2 and G3-G6. Significantly endothelial dysfunction reversion was observed in G5 and G6 when compared to G2. Pitavastatin starting at a 0.5 mg dose was effective in reverting endothelial dysfunction in hypercholesterolemic rabbits.
Resumo:
Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease that affects young adults. It is characterized by generating a chronic demyelinating autoimmune inflammation in the central nervous system. An experimental model for studying MS is the experimental autoimmune encephalomyelitis (EAE), induced by immunization with antigenic proteins from myelin. The present study investigated the evolution of EAE in pregabalin treated animals up to the remission phase. The results demonstrated a delay in the onset of the disease with statistical differences at the 10th and the 16th day after immunization. Additionally, the walking track test (CatWalk) was used to evaluate different parameters related to motor function. Although no difference between groups was obtained for the foot print pressure, the regularity index was improved post treatment, indicating a better motor coordination. The immunohistochemical analysis of putative synapse preservation and glial reactivity revealed that pregabalin treatment improved the overall morphology of the spinal cord. A preservation of circuits was depicted and the glial reaction was downregulated during the course of the disease. qRT-PCR data did not show immunomodulatory effects of pregabalin, indicating that the positive effects were restricted to the CNS environment. Overall, the present data indicate that pregabalin is efficient for reducing the seriousness of EAE, delaying its course as well as reducing synaptic loss and astroglial reaction.
Resumo:
The present study investigated the effectiveness of mesenchymal stem cells (MSCs) associated with a fibrin scaffold (FS) for the peripheral regenerative process after nerve tubulization. Adult female Lewis rats received a unilateral sciatic nerve transection followed by repair with a polycaprolactone (PCL)-based tubular prosthesis. Sixty days after injury, the regenerated nerves were studied by immunohistochemistry. Anti-p75NTR immunostaining was used to investigate the reactivity of the MSCs. Basal labeling, which was upregulated during the regenerative process, was detected in uninjured nerves and was significantly greater in the MSC-treated group. The presence of GFP-positive MSCs was detected in the nerves, indicating the long term survival of such cells. Moreover, there was co-localization between MSCs and BNDF immunoreactivity, showing a possible mechanism by which MSCs improve the reactivity of SCs. Myelinated axon counting and morphometric analyses showed that MSC engrafting led to a higher degree of fiber compaction combined with a trend of increased myelin sheath thickness, when compared with other groups. The functional result of MSC engrafting was that the animals showed higher motor function recovery at the seventh and eighth week after lesion. The findings herein show that MSC+FS therapy improves the nerve regeneration process by positively modulating the reactivity of SCs.
Resumo:
The aim of this study was to evaluate the structural and molecular effects of antiangiogenic therapies and finasteride on the ventral prostate of senile mice. 90 male FVB mice were divided into: Young (18 weeks old) and senile (52 weeks old) groups; finasteride group: finasteride (20mg/kg); SU5416 group: SU5416 (6 mg/kg); TNP-470 group: TNP-470 (15 mg/kg,) and SU5416+TNP-470 group: similar to the SU5416 and TNP-470 groups. After 21 days, prostate ventral lobes were collected for morphological, immunohistochemical and Western blotting analyses. The results demonstrated atrophy, occasional proliferative lesions and inflammatory cells in the prostate during senescence, which were interrupted and/or blocked by treatment with antiangiogenic drugs and finasteride. Decreased AR and endostatin reactivities, and an increase for ER-α, ER-β and VEGF, were seen in the senile group. Decreased VEGF and ER-α reactivities and increased ER-β reactivity were verified in the finasteride, SU5416 groups and especially in SU5416+TNP-470 group. The TNP-470 group showed reduced AR and ER-β protein levels. The senescence favored the occurrence of structural and/or molecular alterations suggesting the onset of malignant lesions, due to the imbalance in the signaling between the epithelium and stroma. The SU5416+TNP-470 treatment was more effective in maintaining the structural, hormonal and angiogenic factor balance in the prostate during senescence, highlighting the signaling of antiproliferation via ER-β.
Resumo:
Congenital diaphragmatic hernia (CDH) is associated with pulmonary hypertension which is often difficult to manage, and a significant cause of morbidity and mortality. In this study, we have used a rabbit model of CDH to evaluate the effects of BAY 60-2770 on the in vitro reactivity of left pulmonary artery. CDH was performed in New Zealand rabbit fetuses (n = 10 per group) and compared to controls. Measurements of body, total and left lung weights (BW, TLW, LLW) were done. Pulmonary artery rings were pre-contracted with phenylephrine (10 μM), after which cumulative concentration-response curves to glyceryl trinitrate (GTN; NO donor), tadalafil (PDE5 inhibitor) and BAY 60-2770 (sGC activator) were obtained as well as the levels of NO (NO3/NO2). LLW, TLW and LBR were decreased in CDH (p < 0.05). In left pulmonary artery, the potency (pEC50) for GTN was markedly lower in CDH (8.25 ± 0.02 versus 9.27 ± 0.03; p < 0.01). In contrast, the potency for BAY 60-2770 was markedly greater in CDH (11.7 ± 0.03 versus 10.5 ± 0.06; p < 0.01). The NO2/NO3 levels were 62 % higher in CDH (p < 0.05). BAY 60-2770 exhibits a greater potency to relax the pulmonary artery in CDH, indicating a potential use for pulmonary hypertension in this disease.
Resumo:
The aim of this study was to investigate whether β-adrenoceptor (β-AR) overstimulation induced by in vivo treatment with isoproterenol (ISO) alters vascular reactivity and nitric oxide (NO) production and signaling in pulmonary arteries. Vehicle or ISO (0.3mgkg(-1)day(-1)) was administered daily to male Wistar rats. After 7days, the jugular vein was cannulated to assess right ventricular (RV) systolic pressure (SP) and end diastolic pressure (EDP). The extralobar pulmonary arteries were isolated to evaluate the relaxation responses, protein expression (Western blot), NO production (diaminofluorescein-2 fluorescence), and cyclic guanosine 3',5'-monophosphate (cGMP) levels (enzyme immunoassay kit). ISO treatment induced RV hypertrophy; however, no differences in RV-SP and EDP were observed. The pulmonary arteries from the ISO-treated group showed enhanced relaxation to acetylcholine that was abolished by the NO synthase (NOS) inhibitor N(ω)-nitro-l-arginine methyl ester (l-NAME); whereas relaxation elicited by sodium nitroprusside, ISO, metaproterenol, mirabegron, or KCl was not affected by ISO treatment. ISO-treated rats displayed enhanced endothelial NOS (eNOS) and vasodilator-stimulated phosphoprotein (VASP) expression in the pulmonary arteries, while phosphodiesterase-5 protein expression decreased. ISO treatment increased NO and cGMP levels and did not induce eNOS uncoupling. The present data indicate that β-AR overactivation enhances the endothelium-dependent relaxation of pulmonary arteries. This effect was linked to an increase in eNOS-derived NO production, cGMP formation and VASP content and to a decrease in phosphodiesterase-5 expression. Therefore, elevated NO bioactivity through cGMP/VASP signaling could represent a protective mechanism of β-AR overactivation on pulmonary circulation.
Resumo:
Hypobromous acid (HOBr) is an inorganic acid produced by the oxidation of the bromide anion (Br(-)). The blood plasma level of Br(-) is more than 1,000-fold lower than that of chloride anion (Cl(-)). Consequently, the endogenous production of HOBr is also lower compared to hypochlorous acid (HOCl). Nevertheless, there is much evidence of the deleterious effects of HOBr. From these data, we hypothesized that the reactivity of HOBr could be better associated with its electrophilic strength. Our hypothesis was confirmed, since HOBr was significantly more reactive than HOCl when the oxidability of the studied compounds was not relevant. For instance: anisole (HOBr, k2=2.3×10(2)M(-1)s(-1), HOCl non-reactive); dansylglycine (HOBr, k2=7.3×10(6)M(-1)s(-1), HOCl, 5.2×10(2)M(-1)s(-1)); salicylic acid (HOBr, k2=4.0×10(4)M(-1)s(-1), non-reactive); 3-hydroxybenzoic acid (HOBr, k2=5.9×10(4)M(-1)s(-1), HOCl, k2=1.1×10(1)M(-1)s(-1)); uridine (HOBr, k2=1.3×10(3)M(-1)s(-1), HOCl non-reactive). The compounds 4-bromoanisole and 5-bromouridine were identified as the products of the reactions between HOBr and anisole or uridine, respectively, i.e. typical products of electrophilic substitutions. Together, these results show that, rather than an oxidant, HOBr is a powerful electrophilic reactant. This chemical property was theoretically confirmed by measuring the positive Mulliken and ChelpG charges upon bromine and chlorine. In conclusion, the high electrophilicity of HOBr could be behind its well-established deleterious effects. We propose that HOBr is the most powerful endogenous electrophile.