9 resultados para REVERSIBLE ADP-RIBOSYLATION
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Long-acting reversible contraceptives (LARCs) include the copper-releasing intrauterine device (IUD), the levonorgestrel-releasing intrauterine system (LNG-IUS) and implants. Despite the high contraceptive efficacy of LARCs, their prevalence of use remains low in many countries. The objective of this study was to assess the main reasons for switching from contraceptive methods requiring daily or monthly compliance to LARC methods within a Brazilian cohort. Women of 18-50 years of age using different contraceptives and wishing to switch to a LARC method answered a questionnaire regarding their motivations for switching from their current contraceptive. Continuation rates were evaluated 1 year after method initiation. Sample size was calculated at 1040 women. Clinical performance was evaluated by life table analysis. The cutoff date for analysis was May 23, 2013. Overall, 1167 women were interviewed; however, after 1 year of use, the medical records of only 1154 women were available for review. The main personal reason for switching, as reported by the women, was fear of becoming pregnant while the main medical reasons were nausea and vomiting and unscheduled bleeding. No pregnancies occurred during LARC use, and the main reasons for discontinuation were expulsion (in the case of the IUD and LNG-IUS) and a decision to undergo surgical sterilization (in the case of the etonogestrel-releasing implant). Continuation rate was ~95.0/100 women/year for the three methods. Most women chose a LARC method for its safety and for practical reasons, and after 1 year of use, most women continued with the method.
Resumo:
What is the contribution of the provision, at no cost for users, of long acting reversible contraceptive methods (LARC; copper intrauterine device [IUD], the levonorgestrel-releasing intrauterine system [LNG-IUS], contraceptive implants and depot-medroxyprogesterone [DMPA] injection) towards the disability-adjusted life years (DALY) averted through a Brazilian university-based clinic established over 30 years ago. Over the last 10 years of evaluation, provision of LARC methods and DMPA by the clinic are estimated to have contributed to DALY averted by between 37 and 60 maternal deaths, 315-424 child mortalities, 634-853 combined maternal morbidity and mortality and child mortality, and 1056-1412 unsafe abortions averted. LARC methods are associated with a high contraceptive effectiveness when compared with contraceptive methods which need frequent attention; perhaps because LARC methods are independent of individual or couple compliance. However, in general previous studies have evaluated contraceptive methods during clinical studies over a short period of time, or not more than 10 years. Furthermore, information regarding the estimation of the DALY averted is scarce. We reviewed 50 004 medical charts from women who consulted for the first time looking for a contraceptive method over the period from 2 January 1980 through 31 December 2012. Women who consulted at the Department of Obstetrics and Gynaecology, University of Campinas, Brazil were new users and users switching contraceptive, including the copper IUD (n = 13 826), the LNG-IUS (n = 1525), implants (n = 277) and DMPA (n = 9387). Estimation of the DALY averted included maternal morbidity and mortality, child mortality and unsafe abortions averted. We obtained 29 416 contraceptive segments of use including 25 009 contraceptive segments of use from 20 821 new users or switchers to any LARC method or DMPA with at least 1 year of follow-up. The mean (± SD) age of the women at first consultation ranged from 25.3 ± 5.7 (range 12-47) years in the 1980s, to 31.9 ± 7.4 (range 16-50) years in 2010-2011. The most common contraceptive chosen at the first consultation was copper IUD (48.3, 74.5 and 64.7% in the 1980s, 1990s and 2000s, respectively). For an evaluation over 20 years, the cumulative pregnancy rates (SEM) were 0.4 (0.2), 2.8 (2.1), 4.0 (0.4) and 1.3 (0.4) for the LNG-IUS, the implants, copper IUD and DMPA, respectively and cumulative continuation rates (SEM) were 15.1 (3.7), 3.9 (1.4), 14.1 (0.6) and 7.3 (1.7) for the LNG-IUS, implants, copper IUD and DMPA, respectively (P < 0.001). Over the last 10 years of evaluation, the estimation of the contribution of the clinic through the provision of LARC methods and DMPA to DALY averted was 37-60 maternal deaths; between 315 and 424 child mortalities; combined maternal morbidity and mortality and child mortality of between 634 and 853, and 1056-1412 unsafe abortions averted. The main limitations are the number of women who never returned to the clinic (overall 14% among the four methods under evaluation); consequently the pregnancy rate could be different. Other limitations include the analysis of two kinds of copper IUD and two kinds of contraceptive implants as the same IUD or implant, and the low number of users of implants. In addition, the DALY calculation relies on a number of estimates, which may vary in different parts of the world. LARC methods and DMPA are highly effective and women who were well-counselled used these methods for a long time. The benefit of averting maternal morbidity and mortality, child mortality, and unsafe abortions is an example to health policy makers to implement more family planning programmes and to offer contraceptive methods, mainly LARC and DMPA, at no cost or at affordable cost for the underprivileged population. This study received partial financial support from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), grant # 2012/12810-4 and from the National Research Council (CNPq), grant #573747/2008-3. B.F.B., M.P.G., and V.M.C. were fellows from the scientific initiation programme from FAPESP. Since the year 2001, all the TCu380A IUD were donated by Injeflex, São Paulo, Brazil, and from the year 2006 all the LNG-IUS were donated by the International Contraceptive Access Foundation (ICA), Turku, Finland. Both donations are as unrestricted grants. The authors declare that there are no conflicts of interest associated with this study.
Resumo:
Reversible phosphorylation of proteins, performed by kinases and phosphatases, is the major post translational protein modification in eukaryotic cells. This intracellular event represents a critical regulatory mechanism of several signaling pathways and can be related to a vast array of diseases, including cancer. Cancer research has produced increasing evidence that kinase and phosphatase activity can be compromised by mutations and also by miRNA silencing, performed by small non-coding and endogenously produced RNA molecules that lead to translational repression. miRNAs are believed to target about one-third of human mRNAs while a single miRNA may target about 200 transcripts simultaneously. Regulation of the phosphorylation balance by miRNAs has been a topic of intense research over the last years, spanning topics going as far as cancer aggressiveness and chemotherapy resistance. By addressing recent studies that have shown miRNA expression patterns as phenotypic signatures of cancers and how miRNA influence cellular processes such as apoptosis, cell cycle control, angiogenesis, inflammation and DNA repair, we discuss how kinases, phosphatases and miRNAs cooperatively act in cancer biology.
Resumo:
The aim of this work was to characterize the effects of partial inhibition of respiratory complex I by rotenone on H2O2 production by isolated rat brain mitochondria in different respiratory states. Flow cytometric analysis of membrane potential in isolated mitochondria indicated that rotenone leads to uniform respiratory inhibition when added to a suspension of mitochondria. When mitochondria were incubated in the presence of a low concentration of rotenone (10 nm) and NADH-linked substrates, oxygen consumption was reduced from 45.9 ± 1.0 to 26.4 ± 2.6 nmol O2 mg(-1) min(-1) and from 7.8 ± 0.3 to 6.3 ± 0.3 nmol O2 mg(-1) min(-1) in respiratory states 3 (ADP-stimulated respiration) and 4 (resting respiration), respectively. Under these conditions, mitochondrial H2O2 production was stimulated from 12.2 ± 1.1 to 21.0 ± 1.2 pmol H2O2 mg(-1) min(-1) and 56.5 ± 4.7 to 95.0 ± 11.1 pmol H2O2 mg(-1) min(-1) in respiratory states 3 and 4, respectively. Similar results were observed when comparing mitochondrial preparations enriched with synaptic or nonsynaptic mitochondria or when 1-methyl-4-phenylpyridinium ion (MPP(+)) was used as a respiratory complex I inhibitor. Rotenone-stimulated H2O2 production in respiratory states 3 and 4 was associated with a high reduction state of endogenous nicotinamide nucleotides. In succinate-supported mitochondrial respiration, where most of the mitochondrial H2O2 production relies on electron backflow from complex II to complex I, low rotenone concentrations inhibited H2O2 production. Rotenone had no effect on mitochondrial elimination of micromolar concentrations of H2O2. The present results support the conclusion that partial complex I inhibition may result in mitochondrial energy crisis and oxidative stress, the former being predominant under oxidative phosphorylation and the latter under resting respiration conditions.
Resumo:
Chronic and systemic treatment of rodents with rotenone, a classical inhibitor of mitochondrial respiratory complex I, results in neurochemical, behavioral, and neuropathological features of Parkinson's disease. The aim of the present study was to evaluate whether brain mitochondria from old rats (24 months old) would be more susceptible to rotenone-induced inhibition of oxygen consumption and increased generation of H2O2 than mitochondria from young-adult rats (3-4 months old). Isolated brain mitochondria were incubated in the presence of different rotenone concentrations (5, 10, and 100nM), and oxygen consumption and H2O2 production were measured during respiratory states 3 (ADP-stimulated respiration) and 4 (resting respiration). Respiratory state 3 and citrate synthase activity were significantly lower in mitochondria from old rats. Mitochondria from young-adult and old rats showed similar sensitivity to rotenone-induced inhibition of oxygen consumption. Similarly, H2O2 production rates by both types of mitochondria were dose-dependently stimulated to the same extent by increasing concentrations of rotenone. We conclude that rotenone exerts similar effects on oxygen consumption and H2O2 production by isolated brain mitochondria from young-adult and old rats. Therefore, aging does not increase the mitochondrial H2O2 generation in response to complex I inhibition.
Resumo:
We reported here for the first time that triboelectric charges on PET sheets can be used to seal and control the flow rate in paper-based devices. The proposed method exhibits simplicity and low cost, provides reversible sealing and minimizes the effect of sample evaporation.
Resumo:
Riboflavin (vitamin B2) is a precursor for coenzymes involved in energy production, biosynthesis, detoxification, and electron scavenging. Previously, we demonstrated that irradiated riboflavin (IR) has potential antitumoral effects against human leukemia cells (HL60), human prostate cancer cells (PC3), and mouse melanoma cells (B16F10) through a common mechanism that leads to apoptosis. Hence, we here investigated the effect of IR on 786-O cells, a known model cell line for clear cell renal cell carcinoma (CCRCC), which is characterized by high-risk metastasis and chemotherapy resistance. IR also induced cell death in 786-O cells by apoptosis, which was not prevented by antioxidant agents. IR treatment was characterized by downregulation of Fas ligand (TNF superfamily, member 6)/Fas (TNF receptor superfamily member 6) (FasL/Fas) and tumor necrosis factor receptor superfamily, member 1a (TNFR1)/TNFRSF1A-associated via death domain (TRADD)/TNF receptor-associated factor 2 (TRAF) signaling pathways (the extrinsic apoptosis pathway), while the intrinsic apoptotic pathway was upregulated, as observed by an elevated Bcl-2 associated x protein/B-cell CLL/lymphoma 2 (Bax/Bcl-2) ratio, reduced cellular inhibitor of apoptosis 1 (c-IAP1) expression, and increased expression of apoptosis-inducing factor (AIF). The observed cell death was caspase-dependent as proven by caspase 3 activation and poly(ADP-ribose) polymerase-1 (PARP) cleavage. IR-induced cell death was also associated with downregulation of v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homologue (avian)/protein serine/threonine kinase B/extracellular signal-regulated protein kinase 1/2 (Src/AKT/ERK1/2) pathway and activation of p38 MAP kinase (p38) and Jun-amino-terminal kinase (JNK). Interestingly, IR treatment leads to inhibition of matrix metalloproteinase-2 (MMP-2) activity and reduced expression of renal cancer aggressiveness markers caveolin-1, low molecular weight phosphotyrosine protein phosphatase (LMWPTP), and kinase insert domain receptor (a type III receptor tyrosine kinase) (VEGFR-2). Together, these results show the potential of IR for treating cancer.
Resumo:
Reduction in sirtuin 1 (Sirt-1) is associated with extracellular matrix (ECM) accumulation in the diabetic kidney. Theobromine may reduce kidney ECM accumulation in diabetic rats. In the current study, we aimed to unravel, under diabetic conditions, the mechanism of kidney ECM accumulation induced by a reduction in Sirt-1 and the effect of theobromine in these events. In vitro, we used immortalized human mesangial cells (iHMCs) exposed to high glucose (HG; 30 mM), with or without small interfering RNA for NOX4 and Sirt-1. In vivo, spontaneously hypertensive rats (SHR) were rendered diabetic by means of streptozotocin and studied after 12 wk. The effects of treatment with theobromine were investigated under both conditions. HG leads to a decrease in Sirt-1 activity and NAD(+) levels in iHMCs. Sirt-1 activity could be reestablished by treatment with NAD(+), silencing NOX4, and poly (ADP-ribose) polymerase-1 (PARP-1) blockade, or with theobromine. HG also leads to a low AMP/ATP ratio, acetylation of SMAD3, and increased collagen IV, which is prevented by theobromine. Sirt-1 or AMPK blockade abolished these effects of theobromine. In diabetic SHR, theobromine prevented increases in albuminuria and kidney collagen IV, reduced AMPK, elevated NADPH oxidase activity and PARP-1, and reduced NAD(+) levels and Sirt-1 activity. These results suggest that in diabetes mellitus, Sirt-1 activity is reduced by PARP-1 activation and NAD(+) depletion due to low AMPK, which increases NOX4 expression, leading to ECM accumulation mediated by transforming growth factor (TGF)-β1 signaling. It is suggested that Sirt-1 activation by theobromine may have therapeutic potential for diabetic nephropathy.
Resumo:
The thermodynamic equilibrium is a state defined by conditions which depend upon some characteristics of the system. It requires thermal, mechanical, chemical and phase equilibrium. Continuum thermodynamics, its radical restriction usually called homogeneous processes thermodynamics, as well as the classical thermodynamic science of reversible processes, each of them defines equilibrium in a differing way. But these definitions lead to the same physical contents.