8 resultados para RADIOACTIVE EFFLUENTS
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.
Resumo:
The aim of this study was to compare the performance of the following techniques on the isolation of volatiles of importance for the aroma/flavor of fresh cashew apple juice: dynamic headspace analysis using PorapakQ(®) as trap, solvent extraction with and without further concentration of the isolate, and solid-phase microextraction (fiber DVB/CAR/PDMS). A total of 181 compounds were identified, from which 44 were esters, 20 terpenes, 19 alcohols, 17 hydrocarbons, 15 ketones, 14 aldehydes, among others. Sensory evaluation of the gas chromatography effluents revealed esters (n = 24) and terpenes (n = 10) as the most important aroma compounds. The four techniques were efficient in isolating esters, a chemical class of high impact in the cashew aroma/flavor. However, the dynamic headspace methodology produced an isolate in which the analytes were in greater concentration, which facilitates their identification (gas chromatography-mass spectrometry) and sensory evaluation in the chromatographic effluents. Solvent extraction (dichloromethane) without further concentration of the isolate was the most efficient methodology for the isolation of terpenes. Because these two techniques also isolated in greater concentration the volatiles from other chemical classes important to the cashew aroma, such as aldehydes and alcohols, they were considered the most advantageous for the study of cashew aroma/flavor.
Resumo:
Growth in the development and production of engineered nanoparticles (ENPs) in recent years has increased the potential for interactions of these nanomaterials with aquatic and terrestrial environments. Carefully designed studies are therefore required in order to understand the fate, transport, stability, and toxicity of nanoparticles. Natural organic matter (NOM), such as the humic substances found in water, sediment, and soil, is one of the substances capable of interacting with ENPs. This review presents the findings of studies of the interaction of ENPs and NOM, and the possible effects on nanoparticle stability and the toxicity of these materials in the environment. In addition, ENPs and NOM are utilized for many different purposes, including the removal of metals and organic compounds from effluents, and the development of new electronic sensors and other devices for the detection of active substances. Discussion is therefore provided of some of the ways in which NOM can be used in the production of nanoparticles. Although there has been an increase in the number of studies in this area, further progress is needed to improve understanding of the dynamic interactions between ENPs and NOM.
Resumo:
Some bacteria common in anaerobic digestion process can ferment a broad variety of organic compounds to organic acids, alcohols, and hydrogen, which can be used as biofuels. Researches are necessary to control the microbial interactions in favor of the alcohol production, as intermediary products of the anaerobic digestion of organic compounds. This paper reports on the effect of buffering capacity on the production of organic acids and alcohols from wastewater by a natural mixed bacterial culture. The hypothesis tested was that the increase of the buffering capacity by supplementation of sodium bicarbonate in the influent results in benefits for alcohol production by anaerobic fermentation of wastewater. When the influent was not supplemented with sodium bicarbonate, the chemical oxygen demand (COD)-ethanol and COD-methanol detected in the effluent corresponded to 22.5 and 12.7 % of the COD-sucrose consumed. Otherwise, when the reactor was fed with influent containing 0.5 g/L of sodium bicarbonate, the COD-ethanol and COD-methanol were effluents that corresponded to 39.2 and 29.6 % of the COD-sucrose consumed. Therefore, the alcohol production by supplementation of the influent with sodium bicarbonate was 33.6 % higher than the fermentation of the influent without sodium bicarbonate.
Resumo:
The first days of radioactivity, the discoveries of X-rays, radioactivity, of alpha- and beta- particles and gamma- radiation, of new radioactive elements, of artificial radioactivity, the neutron and positron and nuclear fission are reviewed as well as several adverse historical marks, such as the Manhattan project and some nuclear and radiological accidents. Nuclear energy generation in Brazil and the world, as an alternative to minimize environmental problems, is discussed, as are the medicinal, industrial and food applications of ionizing radiation. The text leads the reader to reflect on the subject and to consider its various aspects with scientific and technological maturity.
Resumo:
Although the hypothesis that environmental chemicals may exhibit endocrine disrupting effects is not new, the issue has been a growing level of concern due to reports of increased incidences of endocrine-related disease in humans, including declining male fertility, and more significantly, to adverse physiological effects observed in wildlife where cause and effect relationships are more evident. The list of endocrine disrupting chemicals (EDCs) includes a range of anthropogenic compounds, phytoestrogens, naturally occurring sex steroids and synthetic estrogens. Within the aquatic environment, the presence of EDCs has concerned many scientists and water quality regulators. Discharge of effluents from treatment facilities is likely to be a significant source of input of contaminants to many systems, and the potential for concentration of hydrophilic compounds and transformation products within sludges has implications for their disposal. Then, understanding the processes and the fate of EDCs on the environment, as well as the mechanisms of endocrine disruption, may facilitate controlling or limiting exposure of both humans and the environment to these compounds.
Resumo:
The aim of this work is to obtain, purify and characterize biochemically a peroxidase from Copaifera langsdorffii leaves (COP). COP was obtained by acetone precipitation followed by ion-exchange chromatography. Purification yielded 3.5% of peroxidase with the purification factor of 46.86. The COP optimum pH is 6.0 and the temperature is 35 ºC. COP was stable in the pH range of 4.5 to 9.3 and at temperatures below 50.0 ºC. The apparent Michaelis-Menten constants (Km) for guaiacol and H2O2 were 0.04 mM and 0.39 mM respectively. Enzyme turnover was 0.075 s-1 for guaiacol and 0.28 s-1 for hydrogen peroxide. Copaifera langsdorffii leaves showed to be a rich source of active peroxidase (COP) during the whole year. COP could replace HRP, the most used peroxidase, in analytical determinations and treatment of industrial effluents at low cost.
Resumo:
cDNA arrays are a powerful tool for discovering gene expression patterns. Nylon arrays have the advantage that they can be re-used several times. A key issue in high throughput gene expression analysis is sensitivity. In the case of nylon arrays, signal detection can be affected by the plastic bags used to keep membranes humid. In this study, we evaluated the effect of five types of plastics on the radioactive transmittance, number of genes with a signal above the background, and data variability. A polyethylene plastic bag 69 μm thick had a strong shielding effect that blocked 68.7% of the radioactive signal. The shielding effect on transmittance decreased the number of detected genes and increased the data variability. Other plastics which were thinner gave better results. Although plastics made from polyvinylidene chloride, polyvinyl chloride (both 13 μm thick) and polyethylene (29 and 7 μm thick) showed different levels of transmittance, they all gave similarly good performances. Polyvinylidene chloride and polyethylene 29 mm thick were the plastics of choice because of their easy handling. For other types of plastics, it is advisable to run a simple check on their performance in order to obtain the maximum information from nylon cDNA arrays.