7 resultados para RADIATION SOURCE IMPLANTS

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solar radiation, especially ultraviolet A (UVA) and ultraviolet B (UVB), can cause damage to the human body, and exposure to the radiation may vary according to the geographical location, time of year and other factors. The effects of UVA and UVB radiation on organisms range from erythema formation, through tanning and reduced synthesis of macromolecules such as collagen and elastin, to carcinogenic DNA mutations. Some studies suggest that, in addition to the radiation emitted by the sun, artificial sources of radiation, such as commercial lamps, can also generate small amounts of UVA and UVB radiation. Depending on the source intensity and on the distance from the source, this radiation can be harmful to photosensitive individuals. In healthy subjects, the evidence on the danger of this radiation is still far from conclusive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caffeine has already been used as an indicator of anthropogenic impacts, especially the ones related to the disposal of sewage in water bodies. In this work, the presence of caffeine has been correlated with the estrogenic activity of water samples measured using the BLYES assay. After testing 96 surface water samples, it was concluded that caffeine can be used to prioritize samples to be tested for estrogenic activity in water quality programs evaluating emerging contaminants with endocrine disruptor activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional tilted implants are used in oral rehabilitation for heavily absorbed maxilla to avoid bone grafts; however, few research studies evaluate the biomechanical behavior when different angulations of the implants are used. The aim of this study was evaluate, trough photoelastic method, two different angulations and length of the cantilever in fixed implant-supported maxillary complete dentures. Two groups were evaluated: G15 (distal tilted implants 15°) and G35 (distal tilted implants 35°) n = 6. For each model, 2 distal tilted implants (3.5 x 15 mm long cylindrical cone) and 2 parallel tilted implants in the anterior region (3.5 x 10 mm) were installed. Photoelastic models were submitted to three vertical load tests: in the end of cantilever, in the last pillar and in the all pillars at the same time. We obtained the shear stress by Fringes software and found values for total, cervical and apical stress. The quantitative analysis was performed using the Student tests and Mann-Whitney test; p ≥ 0.05. There is no difference between G15 and G35 for total stress regardless of load type. Analyzing the apical region, G35 reduced strain values considering the distal loads (in the cantilever p = 0.03 and in the last pillar p = 0.02), without increasing the stress level in the cervical region. Considering the load in all pillars, G35 showed higher stress concentration in the cervical region (p = 0.04). For distal loads, G15 showed increase of tension in the apical region, while for load in all pillars, G35 inclination increases stress values in the cervical region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the osseointegration properties of prototyped implants with tridimensionally interconnected pores made of the Ti6Al4V alloy and the influence of a thin calcium phosphate coating. Bilateral critical size calvarial defects were created in thirty Wistar rats and filled with coated and uncoated implants in a randomized fashion. The animals were kept for 15, 45 and 90 days. Implant mechanical integration was evaluated with a push-out test. Bone-implant interface was analyzed using scanning electron microscopy. The maximum force to produce initial displacement of the implants increased during the study period, reaching values around 100N for both types of implants. Intimate contact between bone and implant was present, with progressive bone growth into the pores. No significant differences were seen between coated and uncoated implants. Adequate osseointegration can be achieved in calvarial reconstructions using prototyped Ti6Al4V Implants with the described characteristics of surface and porosity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract The aim of this study was to evaluate three transfer techniques used to obtain working casts of implant-supported prostheses through the marginal misfit and strain induced to metallic framework. Thirty working casts were obtained from a metallic master cast, each one containing two implant analogues simulating a clinical situation of three-unit implant-supported fixed prostheses, according to the following transfer impression techniques: Group A, squared transfers splinted with dental floss and acrylic resin, sectioned and re-splinted; Group B, squared transfers splinted with dental floss and bis-acrylic resin; and Group N, squared transfers not splinted. A metallic framework was made for marginal misfit and strain measurements from the metallic master cast. The misfit between metallic framework and the working casts was evaluated with an optical microscope following the single-screw test protocol. In the same conditions, the strain was evaluated using strain gauges placed on the metallic framework. The data was submitted to one-way ANOVA followed by the Tukey's test (α=5%). For both marginal misfit and strain, there were statistically significant differences between Groups A and N (p<0.01) and Groups B and N (p<0.01), with greater values for the Group N. According to the Pearson's test, there was a positive correlation between the variables misfit and strain (r=0.5642). The results of this study showed that the impression techniques with splinted transfers promoted better accuracy than non-splinted one, regardless of the splinting material utilized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroacoustic stimulation is an excellent option for people with residual hearing in the low frequencies, who obtain insufficient benefit with hearing aids. To be effective, the subject's residual hearing should be preserved during cochlear implant surgery. To evaluate the hearing preservation in patients that underwent implant placement and to compare the results in accordance with the approach to the inner ear. 19 subjects underwent a soft surgical technique, and the electrode MED-EL FLEX™ EAS, designed to be atraumatic, was used. We evaluated pre- and postoperative tonal audiometric tests with an average of 18.4 months after implantation, to measure the rate of hearing preservation. 17 patients had total or partial preservation of residual hearing; 5 had total hearing preservation and two individuals had no preservation of hearing. The insertion of the electrode occurred through a cochleostomy in 3 patients, and in 2 of these there was no hearing preservation; the other 16 patients experienced electrode insertion through a round window approach. All patients benefited from the cochlear implant, even those who are only using electrical stimulation. The hearing preservation occurred in 89.4% of cases. There was no significant difference between the forms of inner ear approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Friction coefficient (FC) was quantified between titanium-titanium (Ti-Ti) and titanium-zirconia (Ti-Zr), materials commonly used as abutment and implants, in the presence of a multispecies biofilm (Bf) or salivary pellicle (Pel). Furthermore, FC was used as a parameter to evaluate the biomechanical behavior of a single implant-supported restoration. Interface between Ti-Ti and Ti-Zr without Pel or Bf was used as control (Ctrl). FC was recorded using tribometer and analyzed by two-way Anova and Tukey test (p<0.05). Data were transposed to a finite element model of a dental implant-supported restoration. Models were obtained varying abutment material (Ti and Zr) and FCs recorded (Bf, Pel, and Ctrl). Maximum and shear stress were calculated for bone and equivalent von Misses for prosthetic components. Data were analyzed using two-way ANOVA (p<0.05) and percentage of contribution for each condition (material and FC) was calculated. FC significant differences were observed between Ti-Ti and Ti-Zr for Ctrl and Bf groups, with lower values for Ti-Zr (p<0.05). Within each material group, Ti-Ti differed between all treatments (p<0.05) and for Ti-Zr, only Pel showed higher values compared with Ctrl and Bf (p<0.05). FC contributed to 89.83% (p<0.05) of the stress in the screw, decreasing the stress when the FC was lower. FC resulted in an increase of 59.78% of maximum stress in cortical bone (p=0.05). It can be concluded that the shift of the FC due to the presence of Pel or Bf is able to jeopardize the biomechanical behavior of a single implant-supported restoration.