12 resultados para Quantitative Affinity-chromatography
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Immobilized Metal Ion Affinity Cromatography - IMAC - is a group-specific based adsorption applied to the purification and structure-function studies of proteins and nucleic acids. The adsorption is based on coordination between a metal ion chelated on the surface of a solid matrix and electron donor groups at the surface of the biomolecule. IMAC is a highly selective, low cost, and easily scaled-up technique being used in research and commercial operations. A separation process can be designed for a specific molecule by just selecting an appropriate metal ion, chelating agent, and operational conditions such as pH, ionic strength, and buffer type.
Resumo:
Culture supernatant of Staphylococcus aureus 722 in 3% triptone plus 1% yeast extract was used for EEA purification, proceeding comparison between dye ligand Red A affinity chromatography and classic chromatography. The capture of SEA with Amberlite CG-50 allowed rapid enterotoxin concentration from the culture supernatant. However, the ratio of 15 mg of the resin to a total of 150 mg of the toxin satured the resin, giving only 10 to 30% of SEA recuperation from the supernatant. The elution of concentrated material throught the Red A column resulted in a recovery of 60,87% of the toxin, and required 76 hours, indicating advantage on classic chromatography. Ion exchange column plus gel filtration recovered only 6,5 % of the SEA, and required 114 hours to conclude the procedure. The eletrophoresis of purified SEA indicated high grade of toxin obtained from Red A column, with 90 % of purity, compared to 60 % of classic column.
Resumo:
Plackett-Burman experimental design was applied for the robustness assessment of GC×GC-qMS (Comprehensive Two-Dimensional Gas Chromatography with Fast Quadrupolar Mass Spectrometric Detection) in quantitative and qualitative analysis of volatiles compounds from chocolate samples isolated by headspace solid-phase microextraction (HS-SPME). The influence of small changes around the nominal level of six factors deemed as important on peak areas (carrier gas flow rate, modulation period, temperature of ionic source, MS photomultiplier power, injector temperature and interface temperature) and of four factors considered as potentially influential on spectral quality (minimum and maximum limits of the scanned mass ranges, ions source temperature and photomultiplier power). The analytes selected for the study were 2,3,5-trimethylpyrazine, 2-octanone, octanal, 2-pentyl-furan, 2,3,5,6-tetramethylpyrazine, and 2-nonanone e nonanal. The factors pointed out as important on the robustness of the system were photomultiplier power for quantitative analysis and lower limit of mass scanning range for qualitative analysis.
Resumo:
Congenital muscular dystrophy with laminin α2 chain deficiency (MDC1A) is one of the most severe forms of muscular disease and is characterized by severe muscle weakness and delayed motor milestones. The genetic basis of MDC1A is well known, yet the secondary mechanisms ultimately leading to muscle degeneration and subsequent connective tissue infiltration are not fully understood. In order to obtain new insights into the molecular mechanisms underlying MDC1A, we performed a comparative proteomic analysis of affected muscles (diaphragm and gastrocnemius) from laminin α2 chain-deficient dy(3K)/dy(3K) mice, using multidimensional protein identification technology combined with tandem mass tags. Out of the approximately 700 identified proteins, 113 and 101 proteins, respectively, were differentially expressed in the diseased gastrocnemius and diaphragm muscles compared with normal muscles. A large portion of these proteins are involved in different metabolic processes, bind calcium, or are expressed in the extracellular matrix. Our findings suggest that metabolic alterations and calcium dysregulation could be novel mechanisms that underlie MDC1A and might be targets that should be explored for therapy. Also, detailed knowledge of the composition of fibrotic tissue, rich in extracellular matrix proteins, in laminin α2 chain-deficient muscle might help in the design of future anti-fibrotic treatments. All MS data have been deposited in the ProteomeXchange with identifier PXD000978 (http://proteomecentral.proteomexchange.org/dataset/PXD000978).
Resumo:
A rapid, sensitive and specific method for quantifying propylthiouracil in human plasma using methylthiouracil as the internal standard (IS) is described. The analyte and the IS were extracted from plasma by liquid-liquid extraction using an organic solvent (ethyl acetate). The extracts were analyzed by high performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC-MS/MS) in negative mode (ES-). Chromatography was performed using a Phenomenex Gemini C18 5μm analytical column (4.6mm×150mm i.d.) and a mobile phase consisting of methanol/water/acetonitrile (40/40/20, v/v/v)+0.1% of formic acid. For propylthiouracil and I.S., the optimized parameters of the declustering potential, collision energy and collision exit potential were -60 (V), -26 (eV) and -5 (V), respectively. The method had a chromatographic run time of 2.5min and a linear calibration curve over the range 20-5000ng/mL. The limit of quantification was 20ng/mL. The stability tests indicated no significant degradation. This HPLC-MS/MS procedure was used to assess the bioequivalence of two propylthiouracil 100mg tablet formulations in healthy volunteers of both sexes in fasted and fed state. The geometric mean and 90% confidence interval CI of Test/Reference percent ratios were, without and with food, respectively: 109.28% (103.63-115.25%) and 115.60% (109.03-122.58%) for Cmax, 103.31% (100.74-105.96%) and 103.40% (101.03-105.84) for AUClast. This method offers advantages over those previously reported, in terms of both a simple liquid-liquid extraction without clean-up procedures, as well as a faster run time (2.5min). The LOQ of 20ng/mL is well suited for pharmacokinetic studies. The assay performance results indicate that the method is precise and accurate enough for the routine determination of the propylthiouracil in human plasma. The test formulation with and without food was bioequivalent to reference formulation. Food administration increased the Tmax and decreased the bioavailability (Cmax and AUC).
Resumo:
To analyze the main factors that influence bone mass in children and teenagers assessed by quantitative ultrasound (QUS) of the phalanges. A systematic literature review was performed according to the PRISMA method with searches in databases Pubmed/Medline, SciELO and Bireme for the period 2001-2012, in English and Portuguese languages, using the keywords: children, teenagers, adolescent, ultrasound finger phalanges, quantitative ultrasound of phalanges, phalangeal quantitative ultrasound. 21 articles were included. Girls had, in QUS, Amplitude Dependent Speed of Sound (AD-SoS) values higher than boys during pubertal development. The values of the parameters of QUS of the phalanges and dual-energy X-ray Absorptiometry (DXA) increased with the increase of the maturational stage. Anthropometric variables such as age, weight, height, body mass index (BMI), lean mass showed positive correlations with the values of QUS of the phalanges. Physical activity has also been shown to be positively associated with increased bone mass. Factors such as ethnicity, genetics, caloric intake and socioeconomic profile have not yet shown a conclusive relationship and need a larger number of studies. QUS of the phalanges is a method used to evaluate the progressive acquisition of bone mass during growth and maturation of individuals in school phase, by monitoring changes that occur with increasing age and pubertal stage. There were mainly positive influences in variables of sex, maturity, height, weight and BMI, with similar data when compared to the gold standard method, the DXA.
Resumo:
Although Brazil is the third largest fruit producer in the world, several specimens consumed are not well studied from the chemical viewpoint, especially for quantitative analysis. For this reason and the crescent employment of mass spectrometry (MS) techniques in food science we selected twenty-two phenolic compounds with important biological activities and developed an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method using electrospray (ESI) in negative ion mode aiming their quantification in largely consumed Brazilian fruits (açaí-do-Amazonas, acerola, cashew apple, camu-camu, pineapple and taperebá). Multiple reaction monitoring (MRM) was applied and the selection of proper product ions for each transition assured high selectivity. Linearity (0.995
Resumo:
In this work, we discuss the use of multi-way principal component analysis combined with comprehensive two-dimensional gas chromatography to study the volatile metabolites of the saprophytic fungus Memnoniella sp. isolated in vivo by headspace solid-phase microextraction. This fungus has been identified as having the ability to induce plant resistance against pathogens, possibly through its volatile metabolites. Adequate culture media was inoculated, and its headspace was then sampled with a solid-phase microextraction fiber and chromatographed every 24 h over seven days. The raw chromatogram processing using multi-way principal component analysis allowed the determination of the inoculation period, during which the concentration of volatile metabolites was maximized, as well as the discrimination of the appropriate peaks from the complex culture media background. Several volatile metabolites not previously described in the literature on biocontrol fungi were observed, as well as sesquiterpenes and aliphatic alcohols. These results stress that, due to the complexity of multidimensional chromatographic data, multivariate tools might be mandatory even for apparently trivial tasks, such as the determination of the temporal profile of metabolite production and extinction. However, when compared with conventional gas chromatography, the complex data processing yields a considerable improvement in the information obtained from the samples. This article is protected by copyright. All rights reserved.
Resumo:
In recent years, agronomical researchers began to cultivate several olive varieties in different regions of Brazil to produce virgin olive oil (VOO). Because there has been no reported data regarding the phenolic profile of the first Brazilian VOO, the aim of this work was to determine phenolic contents of these samples using rapid-resolution liquid chromatography coupled to electrospray ionisation time-of-flight mass spectrometry. 25 VOO samples from Arbequina, Koroneiki, Arbosana, Grappolo, Manzanilla, Coratina, Frantoio and MGS Mariense varieties from three different Brazilian states and two crops were analysed. It was possible to quantify 19 phenolic compounds belonging to different classes. The results indicated that Brazilian VOOs have high total phenolic content because the values were comparable with those from high-quality VOOs produced in other countries. VOOs from Coratina, Arbosana and Grappolo presented the highest total phenolic content. These data will be useful in the development and improvement of Brazilian VOO.
Resumo:
High-speed counter-current chromatography (HSCCC) is a major tool for the fast separation of natural products from plants. It was used for the preparative isolation of the flavonoid monoglucosides present in the aerial parts of the Davilla elliptica St. Hill. (Dilleniaceae). This species is used in Brazilian folk medicine for the treatment of gastric disorders. The optimum solvent system used was composed of a mixture of ethyl acetate-n-propanol-water (140:8:80, v/v/v) and led to a successful separation of quercetin-3-O-alpha-L-rhamnopyranoside and myricetin-3-O-alpha-L-rhamnopyranoside in approximately 3.0 hours with purity higher than 95%. Identification was performed by ¹H NMR, 13C NMR and HPLC-UV-DAD analyses.
Resumo:
Volatile compounds from green and roasted yerba mate were analyzed by gas chromatography/mass spectrometry and the flavor profile from yerba mate beverages was determined by descriptive quantitative analyses. The main compounds tentatively identified in green mate were linalool, alpha-terpineol and trans-linalool oxide and in roasted mate were (E,Z)-2,4-heptadienal isomers and 5-methylfurfural. Green mate infusion was qualified as having bitter taste and aroma as well as green grass aroma while roasted mate was defined as having a smooth, slightly burnt aroma. The relationship between the tentatively identified compounds and flavor must be determined by olfatometric analysis.
Resumo:
A flow injection method for the quantitative analysis of ketoconazole in tablets, based on the reaction with iron (III) ions, is presented. Ketoconazole forms a red complex with iron ions in an acid medium, with maximum absorbance at 495 nm. The detection limit was estimated to be 1×10--4 mol L-1; the quantitation limit is about 3×10--4 mol L-1 and approximately 30 determinations can be performed in an hour. The results were compared with those obtained with a reference HPLC method. Statistical comparisons were done using the Student's t procedure and the F test. Complete agreement was found at the 0.95 significance level between the proposed flow injection and the HPLC procedures. The two methods present similar precision, i.e., for HPLC the mean relative standard deviation was ca. 1.2% and for FIA ca. 1.6%.