2 resultados para Post-mortem Change

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the evaluation of metals and (metallo)proteins in vitreous humor samples and their correlations with some biological aspects in different post-mortem intervals (1-7 days), taking into account both decomposing and non-decomposing bodies. After qualitative evaluation of the samples involving 26 elements, representative metal ions (Fe, Mg and Mo) are determined by inductively coupled plasma mass spectrometry after using mini-vial decomposition system for sample preparation. A significant trend for Fe is found with post-mortem time for decomposing bodies because of a significant increase of iron concentration when comparing samples from bodies presenting 3 and 7 days post-mortem interval. An important clue to elucidate the role of metals is the coupling of liquid chromatography with inductively coupled plasma mass spectrometry for identification of metals linked to proteins, as well as mass spectrometry for the identification of those proteins involved in the post-mortem interval.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aerobic metabolism changes rapidly to glycolysis post-mortem resulting in a pH-decrease during the transformation of muscle in to meat affecting ligand binding and redox potential of the heme iron in myoglobin, the meat pigment. The inorganic chemistry of meat involves (i) redox-cycling between iron(II), iron(III), and iron(IV)/protein radicals; (ii) ligand exchange processes; and (iii) spin-equilibra with a change in coordination number for the heme iron. In addition to the function of myoglobin for oxygen storage, new physiological roles of myoglobin are currently being discovered, which notably find close parallels in the processes in fresh meat and nitrite-cured meat products. Myoglobin may be characterized as a bioreactor for small molecules like O2, NO, CO, CO2, H2O, and HNO with importance in bio-regulation and in protection against oxidative stress in vivo otherwise affecting lipids in membranes. Many of these processes may be recognised as colour changes in fresh meat and cured meat products under different atmospheric conditions, and could also be instructive for teaching purposes.