7 resultados para Poly(copper phthalocyanine)
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Mining activities pose severe environmental risks worldwide, generating extreme pH conditions and high concentrations of heavy metals, which can have major impacts on the survival of organisms. In this work, pyrosequencing of the V3 region of the 16S rDNA was used to analyze the bacterial communities in soil samples from a Brazilian copper mine. For the analysis, soil samples were collected from the slopes (geotechnical structures) and the surrounding drainage of the Sossego mine (comprising the Sossego and Sequeirinho deposits). The results revealed complex bacterial diversity, and there was no influence of deposit geographic location on the composition of the communities. However, the environment type played an important role in bacterial community divergence; the composition and frequency of OTUs in the slope samples were different from those of the surrounding drainage samples, and Acidobacteria, Chloroflexi, Firmicutes, and Gammaproteobacteria were responsible for the observed difference. Chemical analysis indicated that both types of sample presented a high metal content, while the amounts of organic matter and water were higher in the surrounding drainage samples. Non-metric multidimensional scaling (N-MDS) analysis identified organic matter and water as important distinguishing factors between the bacterial communities from the two types of mine environment. Although habitat-specific OTUs were found in both environments, they were more abundant in the surrounding drainage samples (around 50 %), and contributed to the higher bacterial diversity found in this habitat. The slope samples were dominated by a smaller number of phyla, especially Firmicutes. The bacterial communities from the slope and surrounding drainage samples were different in structure and composition, and the organic matter and water present in these environments contributed to the observed differences.
Resumo:
The present study analyzed metallothionein (MT) excretion from liver to bile in Nile Tilapia (Oreochromis niloticus) exposed to sub-lethal copper concentrations (2mgL(-1)) in a laboratory setting. MTs in liver and bile were quantified by spectrophotometry after thermal incubation and MT metal-binding profiles were characterized by size exclusion high performance liquid chromatography coupled to ICP-MS (SEC-HPLC-ICP-MS). Results show that liver MT is present in approximately 250-fold higher concentrations than bile MT in non-exposed fish. Differences between the MT profiles from the control and exposed group were observed for both matrices, indicating differential metal-binding behavior when comparing liver and bile MT. This is novel data regarding intra-organ MT comparisons, since differences between organs are usually present only with regard to quantification, not metal-binding behavior. Bile MT showed statistically significant differences between the control and exposed group, while the same did not occur with liver MT. This indicates that MTs synthesized in the liver accumulate more slowly than MTs excreted from liver to bile, since the same fish presented significantly higher MT levels in liver when compared to bile. We postulate that bile, although excreted in the intestine and partially reabsorbed by the same returning to the liver, may also release MT-bound metals more rapidly and efficiently, which may indicate an efficient detoxification route. Thus, we propose that the analysis of bile MTs to observe recent metal exposure may be more adequate than the analysis of liver MTs, since organism responses to metals are more quickly observed in bile, although further studies are necessary.
Resumo:
Candida biofilms on denture surfaces are substantially reduced after a single immersion in denture cleanser. However, whether this effect is maintained when dentures are immersed in cleanser daily is unclear. The purpose of this study was to evaluate the effect of the daily use of enzymatic cleanser on Candida albicans biofilms on denture base materials. The surfaces of polyamide and poly(methyl methacrylate) resin specimens (n=54) were standardized and divided into 12 groups (n=9 per group), according to study factors (material type, treatment type, and periods of treatment). Candida albicans biofilms were allowed to form over 72 hours, after which the specimens were treated with enzymatic cleanser once daily for 1, 4, or 7 days. Thereafter, residual biofilm was ultrasonically removed and analyzed for viable cells (colony forming units/mm(2)) and enzymatic activity (phospholipase, aspartyl-protease, and hemolysin). Factors that interfered with the response variables were analyzed by 3-way ANOVA with the Holm-Sidak multiple comparison method (α=.05). Polyamide resin presented more viable cells of Candida albicans (P<.001) for both the evaluated treatment types and periods. Although enzymatic cleansing significantly (P<.001) reduced viable cells, daily use did not maintain this reduction (P<.001). Phospholipase activity significantly increased with time (P<.001) for both materials and treatments. However, poly(methyl methacrylate) based resin (P<.001) and enzymatic cleansing treatment (P<.001) contributed to lower phospholipase activity. Aspartyl-protease and hemolysin activities were not influenced by study factors (P>.05). Although daily use of an enzymatic cleanser reduced the number of viable cells and phospholipase activity, this treatment was not effective against residual biofilm over time.
Resumo:
Different surface treatment protocols of poly(methyl methacrylate) have been proposed to improve the adhesion of silicone-based resilient denture liners to poly(methyl methacrylate) surfaces. The purpose of this study was to evaluate the effect of different poly(methyl methacrylate) surface treatments on the adhesion of silicone-based resilient denture liners. Poly(methyl methacrylate) specimens were prepared and divided into 4 treatment groups: no treatment (control), methyl methacrylate for 180 seconds, acetone for 30 seconds, and ethyl acetate for 60 seconds. Poly(methyl methacrylate) disks (30.0 × 5.0 mm; n = 10) were evaluated regarding surface roughness and surface free energy. To evaluate tensile bond strength, the resilient material was applied between 2 treated poly(methyl methacrylate) bars (60.0 × 5.0 × 5.0 mm; n = 20 for each group) to form a 2-mm-thick layer. Data were analyzed by 1-way ANOVA and the Tukey honestly significant difference tests (α = .05). A Pearson correlation test verified the influence of surface properties on tensile bond strength. Failure type was assessed, and the poly(methyl methacrylate) surface treatment modifications were visualized with scanning electron microscopy. The surface roughness was increased (P < .05) by methyl methacrylate treatment. For the acetone and ethyl acetate groups, the surface free energy decreased (P < .05). The tensile bond strength was higher for the methyl methacrylate and ethyl acetate groups (P < .05). No correlation was found regarding surface properties and tensile bond strength. Specimens treated with acetone and methyl methacrylate presented a cleaner surface, whereas the ethyl acetate treatment produced a porous topography. The methyl methacrylate and ethyl acetate surface treatment protocols improved the adhesion of a silicone-based resilient denture liner to poly(methyl methacrylate).
Resumo:
The present paper describes the synthesis of molecularly imprinted polymer - poly(methacrylic acid)/silica and reports its performance feasibility with desired adsorption capacity and selectivity for cholesterol extraction. Two imprinted hybrid materials were synthesized at different methacrylic acid (MAA)/tetraethoxysilane (TEOS) molar ratios (6:1 and 1:5) and characterized by FT-IR, TGA, SEM and textural data. Cholesterol adsorption on hybrid materials took place preferably in apolar solvent medium, especially in chloroform. From the kinetic data, the equilibrium time was reached quickly, being 12 and 20 min for the polymers synthesized at MAA/TEOS molar ratio of 6:1 and 1:5, respectively. The pseudo-second-order model provided the best fit for cholesterol adsorption on polymers, confirming the chemical nature of the adsorption process, while the dual-site Langmuir-Freundlich equation presented the best fit to the experimental data, suggesting the existence of two kinds of adsorption sites on both polymers. The maximum adsorption capacities obtained for the polymers synthesized at MAA/TEOS molar ratios of 6:1 and 1:5 were found to be 214.8 and 166.4 mg g(-1), respectively. The results from isotherm data also indicated higher adsorption capacity for both imprinted polymers regarding to corresponding non-imprinted polymers. Nevertheless, taking into account the retention parameters and selectivity of cholesterol in the presence of structurally analogue compounds (5-α-cholestane and 7-dehydrocholesterol), it was observed that the polymer synthesized at the MAA/TEOS molar ratio of 6:1 was much more selective for cholesterol than the one prepared at the ratio of 1:5, thus suggesting that selective binding sites ascribed to the carboxyl group from MAA play a central role in the imprinting effect created on MIP.
Resumo:
Pathological conditions associated with the impairment of nitric oxide (NO) production in the vasculature, such as Raynaud's syndrome and diabetic angiopathy, have stimulated the development of new biomaterials capable of delivering NO topically. With this purpose, we modified poly(vinyl-alcohol) (PVA) by chemically crosslinking it via esterification with mercaptosuccinic acid. This reaction allowed the casting of sulfhydrylated PVA (PVA-SH) films. Differential scanning calorimetry and X-ray diffractometry showed that the crosslinking reaction completely suppressed the crystallization of PVA, leading to a non-porous film with a homogeneous distribution of -SH groups. The remaining free hydroxyl groups in the PVA-SH network conferred partial hydrophylicity to the material, which was responsible for a swelling degree of ca. 110%. The PVA-SH films were subjected to an S-nitrosation reaction of the -SH groups, yielding a PVA containing S-nitrosothiol groups (PVA-SNO). Amperometric and chemiluminescence measurements showed that the PVA-SNO films were capable of releasing NO spontaneously after immersion in physiological medium. Laser Doppler-flowmetry, used to assess the blood flow in the dermal microcirculation, showed that the topical application of hydrated PVA-SNO films on the health skin led to a dose- and time-dependent increase of more than 5-fold in the dermal baseline blood flow in less than 10min, with a prolonged action of more than 4h during continuous application. These results show that PVA-SNO films might emerge as a new material with potential for the topical treatment of microvascular skin disorders.
Resumo:
Data on record regarding weight variation in depot-medroxyprogesterone acetate (DMPA) and levonorgestrel-releasing intrauterine system (LNG-IUS) users are controversial. To date, no studies have yet evaluated weight variation in DMPA and LNG-IUS users in up to ten years of use compared to non-hormonal contraceptive users. A retrospective study analysed weight variations in 2138 women using uninterruptedly DMPA (150 mg intramuscularly, three-monthly; n = 714), the LNG-IUS (n = 701) or a copper-intrauterine device (Cu-IUD; n = 723). At the end of the first year of use, there was a mean weight increase of 1.3 kg, 0.7 kg and 0.2 kg among the DMPA-, LNG-IUS- and Cu-IUD users, respectively, compared to weight at baseline (p < 0.0001). After ten years of use, the mean weight had risen by 6.6 kg, 4.0 and 4.9 kg among the DMPA-, LNG-IUS- and Cu-IUD users, respectively. DMPA-users had gained more weight than LNG-IUS- (p = 0.0197) and than Cu-IUD users (p = 0.0294), with the latter two groups not differing significantly from each other in this respect (p = 0.5532). Users of hormonal and non-hormonal contraceptive methods gained a significant amount of weight over the years. DMPA users gained more weight over the treatment period of up to ten years than women fitted with either a LNG-IUS or a Cu-IUD.