4 resultados para Pla de Nadal (Riba-roja de Túria: Jaciment arqueològic)
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Basic phospholipases A2 (PLA2) are toxic and induce a wide spectrum of pharmacological effects, although the acidic enzyme types are not lethal or cause low lethality. Therefore, it is challenging to elucidate the mechanism of action of acidic phospholipases. This study used the acidic non-toxic Ba SpII RP4 PLA2 from Bothrops alternatus as an antigen to develop anti-PLA2 IgG antibodies in rabbits and used in vivo assays to examine the changes in crude venom when pre-incubated with these antibodies. Using Ouchterlony and western blot analyses on B. alternatus venom, we examined the specificity and sensitivity of phospholipase A2 recognition by the specific antibodies (anti-PLA2 IgG). Neutralisation assays using a non-toxic PLA2 antigen revealed unexpected results. The (indirect) haemolytic activity of whole venom was completely inhibited, and all catalytically active phospholipases A2 were blocked. Myotoxicity and lethality were reduced when the crude venom was pre-incubated with anti-PLA2 immunoglobulins. CK levels in the skeletal muscle were significantly reduced at 6 h, and the muscular damage was more significant at this time-point compared to 3 and 12 h. When four times the LD50 was used (224 μg), half the animals treated with the venom-anti PLA2 IgG mixture survived after 48 h. All assays performed with the specific antibodies revealed that Ba SpII RP4 PLA2 had a synergistic effect on whole-venom toxicity. IgG antibodies against the venom of the Argentinean species B. alternatus represent a valuable tool for elucidation of the roles of acidic PLA2 that appear to have purely digestive roles and for further studies on immunotherapy and snake envenoming in affected areas in Argentina and Brazil.
Resumo:
Bisphenol-A (BPA) is one of the most widespread EDCs used as a base compound in the manufacture of polycarbonate plastics. The aim of our research has been to study how the exposure to BPA during pregnancy affects weight, glucose homeostasis, pancreatic β-cell function and gene expression in the major peripheral organs that control energy flux: white adipose tissue (WAT), the liver and skeletal muscle, in male offspring 17 and 28 weeks old. Pregnant mice were treated with a subcutaneous injection of 10 µg/kg/day of BPA or a vehicle from day 9 to 16 of pregnancy. One month old offspring were divided into four different groups: vehicle treated mice that ate a normal chow diet (Control group); BPA treated mice that also ate a normal chow diet (BPA); vehicle treated animals that had a high fat diet (HFD) and BPA treated animals that were fed HFD (HFD-BPA). The BPA group started to gain weight at 18 weeks old and caught up to the HFD group before week 28. The BPA group as well as the HFD and HFD-BPA ones presented fasting hyperglycemia, glucose intolerance and high levels of non-esterified fatty acids (NEFA) in plasma compared with the Control one. Glucose stimulated insulin release was disrupted, particularly in the HFD-BPA group. In WAT, the mRNA expression of the genes involved in fatty acid metabolism, Srebpc1, Pparα and Cpt1β was decreased by BPA to the same extent as with the HFD treatment. BPA treatment upregulated Pparγ and Prkaa1 genes in the liver; yet it diminished the expression of Cd36. Hepatic triglyceride levels were increased in all groups compared to control. In conclusion, male offspring from BPA-treated mothers presented symptoms of diabesity. This term refers to a form of diabetes which typically develops in later life and is associated with obesity.
Resumo:
Obesity is associated with insulin resistance and is known to be a risk factor for type-2 diabetes. In obese individuals, pancreatic beta-cells try to compensate for the increased insulin demand in order to maintain euglycemia. Most studies have reported that this adaptation is due to morphological changes. However, the involvement of beta-cell functional adaptations in this process needs to be clarified. For this purpose, we evaluated different key steps in the glucose-stimulated insulin secretion (GSIS) in intact islets from female ob/ob obese mice and lean controls. Obese mice showed increased body weight, insulin resistance, hyperinsulinemia, glucose intolerance and fed hyperglycemia. Islets from ob/ob mice exhibited increased glucose-induced mitochondrial activity, reflected by enhanced NAD(P)H production and mitochondrial membrane potential hyperpolarization. Perforated patch-clamp examination of beta-cells within intact islets revealed several alterations in the electrical activity such as increased firing frequency and higher sensitivity to low glucose concentrations. A higher intracellular Ca(2+) mobilization in response to glucose was also found in ob/ob islets. Additionally, they displayed a change in the oscillatory pattern and Ca(2+) signals at low glucose levels. Capacitance experiments in intact islets revealed increased exocytosis in individual ob/ob beta-cells. All these up-regulated processes led to increased GSIS. In contrast, we found a lack of beta-cell Ca(2+) signal coupling, which could be a manifestation of early defects that lead to beta-cell malfunction in the progression to diabetes. These findings indicate that beta-cell functional adaptations are an important process in the compensatory response to obesity.
Resumo:
In this paper we describe the preparation poly (L-lactide) (PLA) nanocapsules as a drug delivery system for the local anesthetic benzocaine. The characterization and in vitro release properties of the system were investigated. The characterization results showed a polydispersity index of 0.14, an average diameter of 190.1± 3 nm, zeta potential of -38.5 mV and an entrapment efficiency of 73%. The release profile of Benzocaine loaded in PLA nanocapsules showed a significant different behavior than that of the pure anesthetic in solution. This study is important to characterize a drug release system using benzocaine for application in pain treatment.