5 resultados para Physical and chemical stability
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
This study sought to evaluate the association between the impact of oral disorders in terms of physical/psychosocial dimensions and quality of life among the elderly. It involved a cross-sectional study conducted among the elderly (65-74 years) in 2008/2009. The social impact was assessed using the Oral Health Impact Profile (OHIP 14) and the quality of life using the SF 12 Short-Form Health Survey. Descriptive, univariate and multivariate (logistic regression) analysis was conducted with correction for the design effect, using SPSS(r)18.0 software. Of the 800 individuals approached, 736 elderly individuals participated (TR = 92%), with a mean age of 67.77 years, the majority of whom showed no impact based on the measurement of the prevalence of OHIP. The functional limitation dimension of the OHIP was associated with the physical domain of the SF12, irrespective of the other variables investigated. However, the seriousness of OHIP and its psychological discomfort and disability dimensions was associated with the mental domain of the SF12. The conclusion reached is that some impacts of oral disorders were associated with unsatisfactory quality of life in the physical and mental domains.
Resumo:
The inflation pressure of the endotracheal tube cuff can cause ischemia of the tracheal mucosa at high pressures; thus, it can cause important tracheal morbidity and tracheal microaspiration of the oropharyngeal secretion, or it can even cause pneumonia associated with mechanical ventilation if the pressure of the cuff is insufficient. In order to investigate the effectiveness of the RUSCH® 7.5 mm endotracheal tube cuff, this study was designed to investigate the physical and mechanical aspects of the cuff in contact with the trachea. For this end, we developed an in vitro experimental model to assess the flow of dye (methylene blue) by the inflated cuff on the wall of the artificial material. We also designed an in vivo study with 12 Large White pigs under endotracheal intubation. We instilled the same dye in the oral cavity of the animals, and we analyzed the presence or not of leakage in the trachea after the region of the cuff after their deaths (animal sacrifice). All cuffs were inflated at the pressure of 30 cmH2O. We observed the passage of fluids through the cuff in all in vitro and in vivo experimental models. We conclude that, as well as several other cuff models in the literature, the RUSCH® 7.5 mm tube cuffs are also not able to completely seal the trachea and thus prevent aspiration of oropharyngeal secretions. Other prevention measures should be taken.
Resumo:
Many Bacillus species can produce biosurfactant, although most of the studies on lipopeptide production by this genus have been focused on Bacillus subtilis. Surfactants are broadly used in pharmaceutical, food and petroleum industry, and biological surfactant shows some advantages over the chemical surfactants, such as less toxicity, production from renewable, cheaper feedstocks and development of novel recombinant hyperproducer strains. This study is aimed to unveil the biosurfactant metabolic pathway and chemical composition in Bacillus safensis strain CCMA-560. The whole genome of the CCMA-560 strain was previously sequenced, and with the aid of bioinformatics tools, its biosurfactant metabolic pathway was compared to other pathways of closely related species. Fourier transform infrared (FTIR) and high-resolution TOF mass spectrometry (MS) were used to characterize the biosurfactant molecule. B. safensis CCMA-560 metabolic pathway is similar to other Bacillus species; however, some differences in amino acid incorporation were observed, and chemical analyses corroborated the genetic results. The strain CCMA-560 harbours two genes flanked by srfAC and srfAD not present in other Bacillus spp., which can be involved in the production of the analogue gramicidin. FTIR and MS showed that B. safensis CCMA-560 produces a mixture of at least four lipopeptides with seven amino acids incorporated and a fatty acid chain with 14 carbons, which makes this molecule similar to the biosurfactant of Bacillus pumilus, namely, pumilacidin. This is the first report on the biosurfactant production by B. safensis, encompassing the investigation of the metabolic pathway and chemical characterization of the biosurfactant molecule.
Resumo:
Essential oil from the leaves of Guatteria australis was obtained by hydrodistillation, analyzed by Gas Chromatography coupled to Mass Spectromery (GC-MS) and their antiproliferative, antileishmanial, antibacterial, antifungal and antioxidant activities were also evaluated. Twenty-three compounds were identified among which germacrene B (50.66%), germacrene D (22.22%) and (E)-caryophyllene (8.99%) were the main compounds. The highest antiproliferative activity was observed against NCI-ADR/RES (TGI = 31.08 μg/ml) and HT-29 (TGI = 32.81 μg/ml) cell lines. It also showed good antileishmanial activity against Leishmania infantum (IC50 = 30.71 μg/ml). On the other hand, the oil exhibited a small effect against Staphylococcus aureus ATCC 6538, S. aureus ATCC 14458 and Escherichia coli ATCC 10799 (MIC = 250 μg/ml), as well as small antioxidant activity (457 μmol TE/g) assessed through ORACFL assay. These results represent the first report regarding chemical composition and bioactivity of G. australis essential oil.
Resumo:
Several biotechnological processes can show an undesirable formation of emulsions making difficult phase separation and product recovery. The breakup of oil-in-water emulsions stabilized by yeast was studied using different physical and chemical methods. These emulsions were composed by deionized water, hexadecane and commercial yeast (Saccharomyces cerevisiae). The stability of the emulsions was evaluated varying the yeast concentration from 7.47 to 22.11% (w/w) and the phases obtained after gravity separation were evaluated on chemical composition, droplet size distribution, rheological behavior and optical microscopy. The cream phase showed kinetic stability attributed to mechanisms as electrostatic repulsion between the droplets, a possible Pickering-type stabilization and the viscoelastic properties of the concentrated emulsion. Oil recovery from cream phase was performed using gravity separation, centrifugation, heating and addition of demulsifier agents (alcohols and magnetic nanoparticles). Long centrifugation time and high centrifugal forces (2h/150,000×g) were necessary to obtain a complete oil recovery. The heat treatment (60°C) was not enough to promote a satisfactory oil separation. Addition of alcohols followed by centrifugation enhanced oil recovery: butanol addition allowed almost complete phase separation of the emulsion while ethanol addition resulted in 84% of oil recovery. Implementation of this method, however, would require additional steps for solvent separation. Addition of charged magnetic nanoparticles was effective by interacting electrostatically with the interface, resulting in emulsion destabilization under a magnetic field. This method reached almost 96% of oil recovery and it was potentially advantageous since no additional steps might be necessary for further purifying the recovered oil.