8 resultados para Pastas de cimento

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work was done with the objective of studying some physical and mechanical characteristics of the sugarcane bagasse ash added to a soil-cement mixture, in order to obtain an alternative construction material. The sugarcane bagasse ash pre-treatment included both sieving and grinding, before mixing with soil and cement. Different proportions of cement-ash were tested by determining its standard consistence and its compressive resistance at 7 and 28 days age. The various treatments were subsequently applied to the specimens molded with different soil-cement-ash mixtures which in turns were submitted to compaction, unconfined compression and water absorption laboratory tests. The results showed that it is possible to replace up to 20% of Portland cement by sugarcane bagasse ash without any damage to the mixture's compressive strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An alternative proposal for floor heating system by means of electric resistance for both chick and piggy installation is presented in this work. Several formulations of rice husk and cement mortar boards were used. An electronic device controlled all board temperature. This system presented a good efficiency design. The conventional cement mortar mixed with rice husk showed a better performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this work is the study of the effect of rice husk addition on the physical and mechanical properties of soil-cement, in order to obtain an alternative construction material. The rice husk preparation consisted of grinding, sieving, and the pre-treatment with lime solution. The physical characteristics of the soil and of the rice husk were determined. Different amounts of soil, cement and rice husk were tested by compaction and unconfined compression. The specimens molded according to the treatments applied to the mixtures were subsequently submitted to compression testing and to tensile splitting cylinder testing at 7 and 28 days of age and to water absorption testing. After determining its physical and mechanical characteristics, the best results were obtained for the soil + 12% (cement + rice husk) mixture. The results showed a promising use as an alternative construction material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The durability of the cellulose-cement composites is a decisive factor to introduce such material in the market. Polymers have been used in concrete and mortar production to increase its durability. The goal of this work was the physical and mechanical characterization of cellulose-cement composites modified by a polymer and the subsequent durability evaluation. The work also evaluated the dispersion of acrylic polymer in composites made of Pinus caribaea residues. The physical properties observed were water absorption by immersion and bulk density. Rupture modulus and toughness were determined by flexural test. The specimens were obtained from pads, produced by pressing and wet curing. Samples were subjected to accelerated aging tests by repeated wetting and drying cycles and hot-water bath and natural aging. The scanning electron microscopy (SEM) allowed verifying the fiber and composite characteristics along the time. For the composite range analyzed, it was observed the polymer improved the mechanical properties of composites besides a significant decreasing in water absorption. The use of polymer improved the performance of vegetable fiber-cement composites when compared to the conventional mortar, due to water absorption decreasing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rice husk and its ash are abundant and renewable and can be used to obtain alternative building materials. An increase in the consumption of such waste could help minimize the environmental problems from their improper disposal. This study aimed to evaluate the use of ashes as a cargo mineral (filler). However, the rice husk chemically interferes in the conduct of the based cement mixtures. Thus, different mixes cement-rice husk with and without the addition of ash were evaluated in order to highlight the influence of its components (husk; ash), which could otherwise be excluded or be underestimated. Cylindrical samples (test of simple compression and traction by diametrical compression) and samples extracted from manufactured pressed board (test of bending and parallel compression to the surface), were used to evaluate the behavior of different mixtures of components (rice hush; RHA - rice husk ahs). The results of the mechanical tests showed, in general, there is not a statistical difference between the mixtures, which are associated with the chemical suppressive effect of the rice husk ash. The mixture of rice husk of 10 mm, with an addition of 35% of the rice husk ash, is notable for allowing the highest consumption of rice husk and rice husk ash, to reduce 25% the consumption of cement and to allow the storage (without emissions to the atmosphere), around 1.9 ton of CO2 per ton of cement consumed, thus contributing to the reduction of CO2 emissions, which can stimulate rural constructions under an ecological point of view.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rice husk, employed as an energy source at milling industries in Brazil generates, after burning, a dark ash. This residue is not yet conveniently disposed, being currently dumped on large areas, causing environmental problems. This research intended to evaluate the applications of residual rice husk ashes (RHA) as a partial replacement of cement for mortar production. Rice husk ash was chemically characterized through X-ray fluorescence, determination of carbon content, X-ray diffraction, and laser granulometric analysis. Mortar specimens were submitted to two different exposure conditions: internal and external environments at a maximum period of five months. Physical-mechanical testing were compressive strength and ultrasonic pulse velocity (UPV). Although presenting good mechanical performance, the mortar based on ash (RHA) did not present pozolanicity but it can be employed in cement matrices as inert material (filler).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this research was to study the effect of chemical additives (lime and Portland cement) associated with sodium silicate on soil in order to obtain compressed soil bricks. Mini panels were constructed with such bricks being their physical and mechanical characteristics determined in laboratory conditions and their behavior evaluated through the association of destructive and non-destructive methods. For this purpose a sandy soil and a finely divided one were added to Portland cement and lime in the dosage of 6% and 10% taken in dry weight basis in relation to the dry soil. The sodium silicate dosage of 4% was also taken in dry weight basis in relation to the dry soil-cement or to the dry soil-lime. The compressed soil bricks were cured in a humidity chamber for 7; 28; 56 and 91 days. The bricks were laid on the fourteenth day to form prismatic mini panels each one with four layers of bricks. After 28; 56 and 91 days the mini panels were submitted to both; ultrasonic and compressive tests to determine its elastic properties (dynamic modulus) and the compressive resistance. The best results in terms of compressive strength, water absorption capacity or dynamic elastic modulus, were reached by the sandy soil added to 10% of Portland cement or lime associated with sodium silicate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dental materials that release fluoride have been shown to be effective in caries inhibition around restorations. Adhesive materials would also be effective in caries inhibition by sealing and protecting cavity margins from acidic demineralization. This in vitro study tested the hypothesis that composite restorations with a dentin adhesive system have a caries preventive effect similar to that of an adhesive material with fluoride - glass-ionomer cement - on root surfaces. Twenty roots from extracted sound third molars were embedded in polystyrene resin and ground flat. Standardized cavities were prepared in leveled root surfaces and randomly restored with (a) Chelon-Fil (Espe) or (b) Z100/SingleBond (3M). Baseline indentations were measured at 100, 200 and 300 mum from the occlusal margins of each restoration and the surface microhardness values were obtained using a Knoop diamond indenter. A 2.0 mm wide margin around the restorations was submitted to a pH-cycling model, at 37ºC. After that, surface microhardness was measured again, as it was before. The differences between baseline and final surface microhardness were considered for statistical analysis. The median values of differences were (a): -3.8; -0.3; -1.0; and (b): 3.3; 2.5; 1.7, for the distances of 100, 200 and 300 mum, respectively. The Kruskal-Wallis test did not show statistically significant difference between 100, 200 and 300 mum distances in each tested group. There was no difference between the studied materials at the distances of 200 and 300 mum. Chelon-Fil was statistically different from Z100/SingleBond, at 100 mum (p<0.05). Under the studied conditions, the glass-ionomer cement had a higher caries preventive effect than the composite/dentin adhesive restorations.