2 resultados para Pancreatitis -- metabolism
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Medullary thyroid carcinoma (MTC) originates in the thyroid parafollicular cells and represents 3-4% of the malignant neoplasms that affect this gland. Approximately 25% of these cases are hereditary due to activating mutations in the REarranged during Transfection (RET) proto-oncogene. The course of MTC is indolent, and survival rates depend on the tumor stage at diagnosis. The present article describes clinical evidence-based guidelines for the diagnosis, treatment, and follow-up of MTC. The aim of the consensus described herein, which was elaborated by Brazilian experts and sponsored by the Thyroid Department of the Brazilian Society of Endocrinology and Metabolism, was to discuss the diagnosis, treatment, and follow-up of individuals with MTC in accordance with the latest evidence reported in the literature. After clinical questions were elaborated, the available literature was initially surveyed for evidence in the MedLine-PubMed database, followed by the Embase and Scientific Electronic Library Online/Latin American and Caribbean Health Science Literature (SciELO/Lilacs) databases. The strength of evidence was assessed according to the Oxford classification of evidence levels, which is based on study design, and the best evidence available for each question was selected. Eleven questions corresponded to MTC diagnosis, 8 corresponded to its surgical treatment, and 13 corresponded to follow-up, for a total of 32 recommendations. The present article discusses the clinical and molecular diagnosis, initial surgical treatment, and postoperative management of MTC, as well as the therapeutic options for metastatic disease. MTC should be suspected in individuals who present with thyroid nodules and family histories of MTC, associations with pheochromocytoma and hyperparathyroidism, and/or typical phenotypic characteristics such as ganglioneuromatosis and Marfanoid habitus. Fine-needle nodule aspiration, serum calcitonin measurements, and anatomical-pathological examinations are useful for diagnostic confirmation. Surgery represents the only curative therapeutic strategy. The therapeutic options for metastatic disease remain limited and are restricted to disease control. Judicious postoperative assessments that focus on the identification of residual or recurrent disease are of paramount importance when defining the follow-up and later therapeutic management strategies.
Resumo:
Low temperatures negatively impact the metabolism of orange trees, and the extent of damage can be influenced by the rootstock. We evaluated the effects of low nocturnal temperatures on Valencia orange scions grafted on Rangpur lime or Swingle citrumelo rootstocks. We exposed six-month-old plants to night temperatures of 20ºC and 8ºC under controlled conditions. After decreasing the temperature to 8ºC, there were decreases in leaf CO2 assimilation, stomatal conductance, mesophyll conductance and CO2 concentration in the chloroplasts, in plant hydraulic conductivity and in the maximum electron transport rate driven ribulose-1,5-bisphosphate (RuBP) regeneration in plants grafted on both rootstocks. However, the effects of low night temperature were more severe in plants grafted on Rangpur rootstock, which also presented reduction in the maximum rate of RuBP carboxylation and in the maximum quantum efficiency of the PSII. In general, irreversible damage due to night chilling was found in the photosynthetic apparatus of plants grafted on Rangpur lime. Low night temperatures induced similar changes in the antioxidant metabolism, preventing oxidative damage in citrus leaves on both rootstocks. As photosynthesis is linked to plant growth, our findings indicate that the rootstock may improve the performance of citrus trees in environments with low night temperatures, with Swingle rootstock improving the photosynthetic acclimation in leaves of orange plants.