3 resultados para PI(3)K

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oropouche virus (OROV) is a member of the Orthobunyavirus genus in the Bunyaviridae family and a prominent cause of insect-transmitted viral disease in Central and South America. Despite its clinical relevance, little is known about OROV pathogenesis. To define the host defense pathways that control OROV infection and disease, we evaluated OROV pathogenesis and immune responses in primary cells and mice that were deficient in the RIG-I-like receptor signaling pathway (MDA5, RIG-I, or MAVS), downstream regulatory transcription factors (IRF-3 or IRF-7), IFN-β, or the receptor for type I IFN signaling (IFNAR). OROV replicated to higher levels in primary fibroblasts and dendritic cells lacking MAVS signaling, the transcription factors IRF-3 and IRF-7, or IFNAR. In mice, deletion of IFNAR, MAVS, or IRF-3 and IRF-7 resulted in uncontrolled OROV replication, hypercytokinemia, extensive liver damage, and death whereas wild-type (WT) congenic animals failed to develop disease. Unexpectedly, mice with a selective deletion of IFNAR on myeloid cells (CD11c Cre(+) Ifnar(f/f) or LysM Cre(+) Ifnar(f/f)) did not sustain enhanced disease with OROV or La Crosse virus, a closely related encephalitic orthobunyavirus. In bone marrow chimera studies, recipient irradiated Ifnar(-/-) mice reconstituted with WT hematopoietic cells sustained high levels of OROV replication and liver damage, whereas WT mice reconstituted with Ifnar(-/-) bone marrow were resistant to disease. Collectively, these results establish a dominant protective role for MAVS, IRF-3 and IRF-7, and IFNAR in restricting OROV virus infection and tissue injury, and suggest that IFN signaling in non-myeloid cells contributes to the host defense against orthobunyaviruses. Oropouche virus (OROV) is an emerging arthropod-transmitted orthobunyavirus that causes episodic outbreaks of a debilitating febrile illness in humans in countries of South and Central America. The continued expansion of the range and number of its arthropod vectors increases the likelihood that OROV will spread into new regions. At present, the pathogenesis of OROV in humans or other vertebrate animals remains poorly understood. To define cellular mechanisms of control of OROV infection, we performed infection studies in a series of primary cells and mice that were deficient in key innate immune genes involved in pathogen recognition and control. Our results establish that a MAVS-dependent type I IFN signaling pathway has a dominant role in restricting OROV infection and pathogenesis in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A complex iridium oxide β-Li_{2}IrO_{3} crystallizes in a hyperhoneycomb structure, a three-dimensional analogue of honeycomb lattice, and is found to be a spin-orbital Mott insulator with J_{eff}=1/2 moment. Ir ions are connected to the three neighboring Ir ions via Ir-O_{2}-Ir bonding planes, which very likely gives rise to bond-dependent ferromagnetic interactions between the J_{eff}=1/2 moments, an essential ingredient of Kitaev model with a spin liquid ground state. Dominant ferromagnetic interaction between J_{eff}=1/2 moments is indeed confirmed by the temperature dependence of magnetic susceptibility χ(T) which shows a positive Curie-Weiss temperature θ_{CW}∼+40  K. A magnetic ordering with a very small entropy change, likely associated with a noncollinear arrangement of J_{eff}=1/2 moments, is observed at T_{c}=38  K. With the application of magnetic field to the ordered state, a large moment of more than 0.35  μ_{B}/Ir is induced above 3 T, a substantially polarized J_{eff}=1/2 state. We argue that the close proximity to ferromagnetism and the presence of large fluctuations evidence that the ground state of hyperhoneycomb β-Li_{2}IrO_{3} is located in close proximity of a Kitaev spin liquid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three compounds have been synthesized with formulae [3-MeRad][Ni(dmit)2] (1), [4-MeRad][Ni(dmit)2] (2) and [4-PrRad][Ni(dmit)2] (3) where [Ni(dmit)2]- is an anionic pi-radical (dmit = 1,3-dithiol-2-thione-4,5-dithiolate) and [3-MeRad]+ is 3-N-methylpyridinium alpha-nitronyl nitroxide, [4-MeRad]+ is 4-N-methylpyridinium alpha-nitronyl nitroxide and [4-PrRad]+ is 4-N-propylpyridinium alpha-nitronyl nitroxide. The temperature-dependent magnetic susceptibility of 1 revealed that an antiferromagnetic interaction operates between the 3-MeRad+ radical cations with exchange coupling constants of J1 = - 1.72 cm-1 and antiferromagnetism assigned to the spin ladder chains of the Ni(dmit)2 radical anions. Compound 1 exhibits semiconducting behavior and 3 presents capacitor behavior in the temperature range studied (4 - 300 K).