4 resultados para PHOSPHATE CARRIER
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Xanthomonas citri subsp. citri (X. citri) is the causative agent of the citrus canker, a disease that affects several citrus plants in Brazil and across the world. Although many studies have demonstrated the importance of genes for infection and pathogenesis in this bacterium, there are no data related to phosphate uptake and assimilation pathways. To identify the proteins that are involved in the phosphate response, we performed a proteomic analysis of X. citri extracts after growth in three culture media with different phosphate concentrations. Using mass spectrometry and bioinformatics analysis, we showed that X. citri conserved orthologous genes from Pho regulon in Escherichia coli, including the two-component system PhoR/PhoB, ATP binding cassette (ABC transporter) Pst for phosphate uptake, and the alkaline phosphatase PhoA. Analysis performed under phosphate starvation provided evidence of the relevance of the Pst system for phosphate uptake, as well as both periplasmic binding proteins, PhoX and PstS, which were formed in high abundance. The results from this study are the first evidence of the Pho regulon activation in X. citri and bring new insights for studies related to the bacterial metabolism and physiology. Biological significance Using proteomics and bioinformatics analysis we showed for the first time that the phytopathogenic bacterium X. citri conserves a set of proteins that belong to the Pho regulon, which are induced during phosphate starvation. The most relevant in terms of conservation and up-regulation were the periplasmic-binding proteins PstS and PhoX from the ABC transporter PstSBAC for phosphate, the two-component system composed by PhoR/PhoB and the alkaline phosphatase PhoA.
Resumo:
This study was aimed at spray drying hydrolysed casein using gum Arabic as the carrier agent, in order to decrease the bitter taste. Three formulations with differing proportions of hydrolysed casein: gum Arabic (10:90, 20:80 and 30:70) were prepared and characterized. They were evaluated for their moisture content, water activity, hygroscopicity, dispersibility in water and in oil, particle size and distribution, particle morphology, thermal behaviour (DSC) and bitter taste by a trained sensory panel using a paired-comparison test (free samples vs. spray dried samples). The proportion of hydrolysed casein did not affect the morphology of the microspheres. The spray drying process increased product stability and modified the dissolution time, but had no effect on the ability of the material to dissolve in either water or oil. The sensory tests showed that the spray drying process using gum Arabic as the carrier was efficient in attenuating or masking the bitter taste of the hydrolysed casein.
Resumo:
High phosphate (Pi) levels and extracellular matrix (ECM) accumulation are associated with chronic kidney disease progression. However, how high Pi levels contribute to ECM accumulation in mesangial cells is unknown. The present study investigated the role and mechanism of high Pi levels in ECM accumulation in immortalized human mesangial cells (iHMCs). iHMCs were exposed to normal (0.9 mM) or increasing Pi concentrations (2.5 and 5 mM) with or without diferent blockers or activators. NOX4, phosphorylated AMPK (p-AMPK), phosphorylated SMAD3 (p-SMAD3), fibronectin (F/N), collagen IV (C-IV) and alpha-smooth muscle actin (α-SMA) expression was assessed via western blot and immunofluorescence. Lucigenin-enhanced chemiluminescence, and dihydroethidium (DHE) assessed NADPH oxidase activity and superoxide (SO), respectively. In iHMCs, a Pi transporter blocker (PFA) abrogated high Pi-induced AMPK inactivation, increase in NADPH oxidase-induced reactive oxygen species (ROS) levels, NOX4, p-SMAD3, α-SMA and C-IV expression. AMPK activation by AICAR, NOX4 silencing or NADPH oxidase blocker prevented high Pi-induced DHE levels, p-SMAD3, F/N, C-IV and α-SMA expression. AMPK inactivation with NOX4-induced ROS formation and transforming growth factor ß-1 (TGFß-1) signaling activation mediates high Pi-induced ECM accumulation in iHMCs. Maneuvers increasing AMPK or reducing NOX4 activity may contribute to renal protection under hyperphosphatemia.
Resumo:
During the last ten years, graphene oxide has been explored in many applications due to its remarkable electroconductivity, thermal properties and mobility of charge carriers, among other properties. As discussed in this review, the literature suggests that a total characterization of graphene oxide must be conducted because oxidation debris (synthesis impurities) present in the graphene oxides could act as a graphene oxide surfactant, stabilizing aqueous dispersions. It is also important to note that the structure models of graphene oxide need to be revisited because of significant implications for its chemical composition and its direct covalent functionalization. Another aspect that is discussed is the need to consider graphene oxide surface chemistry. The hemolysis assay is recommended as a reliable test for the preliminary assessment of graphene oxide toxicity, biocompatibility and cell membrane interaction. More recently, graphene oxide has been extensively explored for drug delivery applications. An important increase in research efforts in this emerging field is clearly represented by the hundreds of related publications per year, including some reviews. Many studies have been performed to explore the graphene oxide properties that enable it to deliver more than one activity simultaneously and to combine multidrug systems with photothermal therapy, indicating that graphene oxide is an attractive tool to overcome hurdles in cancer therapies. Some strategic aspects of the application of these materials in cancer treatment are also discussed. In vitro studies have indicated that graphene oxide can also promote stem cell adhesion, growth and differentiation, and this review discusses the recent and pertinent findings regarding graphene oxide as a valuable nanomaterial for stem cell research in medicine. The protein corona is a key concept in nanomedicine and nanotoxicology because it provides a biomolecular identity for nanomaterials in a biological environment. Understanding protein corona-nanomaterial interactions and their influence on cellular responses is a challenging task at the nanobiointerface. New aspects and developments in this area are discussed.