4 resultados para Nonequilibrium thermodynamics
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
The main subject of this article is to show the parallelism betwen the Ellingham and Van't Hoff diagrams. The first one is a graphic representation of the changes in the standard Gibbs free energy (deltarGtheta) as a function of T and was introduced by Ellingham in 1944, in order to study metallurgic processes involving oxides and sulphides. On the other hand, the Van't Hoff diagram is a representation of the function ln K versus (1/T). The equivalence between both diagrams is easily demonstrated, making simple mathematical manipulations. In order to show the parallelism between both diagrams, they are presented briefly and two examples are discussed. The comparison of the both diagrams surely will be helpful to students and teachers in their learning and teaching activities, and will certainly enrich important aspects of chemical thermodynamics.
Resumo:
The chemical amount values vary in a discrete or continuous form, depending on the approach used to describe the system. In classical sciences, the chemical amount is a property of the macroscopic system and, like any other property of the system, it varies continuously. This is neither inconsistent with the concept of indivisible particles forming the system, nor a mere approximation, but it is a sound concept which enables the use of differential calculus, for instance, in chemical thermodynamics. It is shown that the fundamental laws of chemistry are absolutely compatible to the continuous concept of the chemical amount.
Resumo:
The thermodynamic equilibrium is a state defined by conditions which depend upon some characteristics of the system. It requires thermal, mechanical, chemical and phase equilibrium. Continuum thermodynamics, its radical restriction usually called homogeneous processes thermodynamics, as well as the classical thermodynamic science of reversible processes, each of them defines equilibrium in a differing way. But these definitions lead to the same physical contents.
Resumo:
Considering intrinsic characteristics of the system exclusively, both statistical and information theory interpretations of the second law are used to provide more comprehensive meanings for the concepts of entropy, temperature, and Helmholtz and Gibbs energies. The coherence of Clausius inequality to these concepts is emphasized. The aim of this work is to re-discuss the second law of thermodynamics in accordance to homogeneous processes thermodynamics, a temporal science which is the very special oversimplification of continuum mechanics for spatially constant intensive properties.