6 resultados para Noncommutative geometry
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Maxillofacial trauma resulting from falls in elderly patients is a major social and health care concern. Most of these traumatic events involve mandibular fractures. The aim of this study was to analyze stress distributions from traumatic loads applied on the symphyseal, parasymphyseal, and mandibular body regions in the elderly edentulous mandible using finite-element analysis (FEA). Computerized tomographic analysis of an edentulous macerated human mandible of a patient approximately 65 years old was performed. The bone structure was converted into a 3-dimensional stereolithographic model, which was used to construct the computer-aided design (CAD) geometry for FEA. The mechanical properties of cortical and cancellous bone were characterized as isotropic and elastic structures, respectively, in the CAD model. The condyles were constrained to prevent free movement in the x-, y-, and z-axes during simulation. This enabled the simulation to include the presence of masticatory muscles during trauma. Three different simulations were performed. Loads of 700 N were applied perpendicular to the surface of the cortical bone in the symphyseal, parasymphyseal, and mandibular body regions. The simulation results were evaluated according to equivalent von Mises stress distributions. Traumatic load at the symphyseal region generated low stress levels in the mental region and high stress levels in the mandibular neck. Traumatic load at the parasymphyseal region concentrated the resulting stress close to the mental foramen. Traumatic load in the mandibular body generated extensive stress in the mandibular body, angle, and ramus. FEA enabled precise mapping of the stress distribution in a human elderly edentulous mandible (neck and mandibular angle) in response to 3 different traumatic load conditions. This knowledge can help guide emergency responders as they evaluate patients after a traumatic event.
Resumo:
FeBr2 has reacted with an equivalent of mnt2- (mnt = cis-1,2-dicyanoethylene-1,2-dithiolate) and the α-diimine L (L = 1,10'-phenantroline, 2,2'-bipyridine) in THF solution, and followed by adding of t-butyl-isocyanide to give [Fe(mnt)(L)(t-BuNC)2] neutral compound. The products were characterized by infrared, UV-visible and Mössbauer spectroscopy, besides thermogravimetric and conductivity data. The geometry in the equilibrium was calculated by the density functional theory and the electronic spectrum by the time-dependent. The experimental and theoretical results in good agreement have defined an octahedral geometry with two isocyanide neighbours. The π→π* intraligand electronic transition was not observed for cis-isomers in the near-IR spectral region.
Resumo:
Edible mushroom are highly perishable foods. Drying is an alternative to provide safe storage. In this work, the effects of some drying parameters on the quality of Shiitake mushroom were investigated: geometry of the raw material (whole and sliced), drying temperature (50 °C and 70 ºC) and final moisture content (5% and 15% wb). Experimental kinetics of drying was built and color and texture analyses were done in fresh and in rehydrated dried product. The effect of parameters was evaluated by analysis of variance and test of multiple comparisons. Drying kinetics showed that drying happened in falling-rate period and sliced mushroom dried at 70 ºC required lesser drying time than other treatments. Mushroom dried at 70 ºC showed less darkening. Drying time affected mushroom quality, evaluated by great hardness, gummosis and darkening.
Resumo:
This paper presents the behavior of three bored piles conducted in diabasic soil submitted to uplift forces. The piles were built at the site for Experimental Studies in Soil Mechanics and Foundations of UNICAMP, located in the city of Campinas, Brazil. Field tests have already been conducted at the site (SPT, CPT, DMT and PMT), as well as laboratory tests by using sample soils taken from a well up to 17 m deep. The water table is not checked until a depth of 17 m. In order to check the behavior of the piles when submitted to uplift forces, slow static load tests were carried out as the recommendations of NBR 12131. The carrying capacity of these piles was also provided by means of theoretical methods, appropriate for uplift forces, and through semi-empirical methods appropriate for compression forces, considering only the portion of lateral resistance. The values estimated by using the considered methods were compared to those obtained by means of load tests. One of the tested piles was extracted from the soil to be the subject of a study on its geometry.
Resumo:
This paper describes a method for leaf vein shape characterization using Hermite polynomial cubic representation. The elements associated with this representation are used as secondary vein descriptors and their discriminatory potential are analyzed based on the identification of two legume species (Lonchocarpus muehlbergianus Hassl. and L. subglaucescens Mart, ex Benth.). The elements of Hermite geometry influence a curve along all its extension allowing a global description of the secondary vein course by a descriptor of low dimensionality. The obtained results shown the analyzed species can be discriminated by this method and it can be used in addition to commonly considered elements in the taxonomic process.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física