4 resultados para Nitrifying bacteria.

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the antimicrobial efficacy of Clearfil SE Protect (CP) and Clearfil SE Bond (CB) after curing and rinsed against five individual oral microorganisms as well as a mixture of bacterial culture prepared from the selected test organisms. Bacterial suspensions were prepared from single species of Streptococcus mutans, Streptococcus sobrinus, Streptococcus gordonii, Actinomyces viscosus and Lactobacillus lactis, as well as mixed bacterial suspensions from these organisms. Dentin bonding system discs (6 mm×2 mm) were prepared, cured, washed and placed on the bacterial suspension of single species or multispecies bacteria for 15, 30 and 60 min. MTT, Live/Dead bacterial viability (antibacterial effect), and XTT (metabolic activity) assays were used to test the two dentin system's antibacterial effect. All assays were done in triplicates and each experiment repeated at least three times. Data were submitted to ANOVA and Scheffe's f-test (5%). Greater than 40% bacteria killing was seen within 15 min, and the killing progressed with increasing time of incubation with CP discs. However, a longer (60 min) period of incubation was required by CP to achieve similar antimicrobial effect against mixed bacterial suspension. CB had no significant effect on the viability or metabolic activity of the test microorganisms when compared to the control bacterial culture. CP was significantly effective in reducing the viability and metabolic activity of the test organisms. The results demonstrated the antimicrobial efficacy of CP both on single and multispecies bacterial culture. CP may be beneficial in reducing bacterial infections in cavity preparations in clinical dentistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the effectiveness of Reciproc for the removal of cultivable bacteria and endotoxins from root canals in comparison with multifile rotary systems. The root canals of forty human single-rooted mandibular pre-molars were contaminated with an Escherichia coli suspension for 21 days and randomly assigned to four groups according to the instrumentation system: GI - Reciproc (VDW); GII - Mtwo (VDW); GIII - ProTaper Universal (Dentsply Maillefer); and GIV -FKG Race(™) (FKG Dentaire) (n = 10 per group). Bacterial and endotoxin samples were taken with a sterile/apyrogenic paper point before (s1) and after instrumentation (s2). Culture techniques determined the colony-forming units (CFU) and the Limulus Amebocyte Lysate assay was used for endotoxin quantification. Results were submitted to paired t-test and anova. At s1, bacteria and endotoxins were recovered in 100% of the root canals investigated (40/40). After instrumentation, all systems were associated with a highly significant reduction of the bacterial load and endotoxin levels, respectively: GI - Reciproc (99.34% and 91.69%); GII - Mtwo (99.86% and 83.11%); GIII - ProTaper (99.93% and 78.56%) and GIV - FKG Race(™) (99.99% and 82.52%) (P < 0.001). No statistical difference were found amongst the instrumentation systems regarding bacteria and endotoxin removal (P > 0.01). The reciprocating single file, Reciproc, was as effective as the multifile rotary systems for the removal of bacteria and endotoxins from root canals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lawsonia inermis mediated synthesis of silver nanoparticles (Ag-NPs) and its efficacy against Candida albicans, Microsporum canis, Propioniabacterium acne and Trichophyton mentagrophytes is reported. A two-step mechanism has been proposed for bioreduction and formation of an intermediate complex leading to the synthesis of capped nanoparticles was developed. In addition, antimicrobial gel for M. canis and T. mentagrophytes was also formulated. Ag-NPs were synthesized by challenging the leaft extract of L. inermis with 1 mM AgNO₃. The Ag-NPs were characterized by Ultraviolet-Visible (UV-Vis) spectrophotometer and Fourier transform infrared spectroscopy (FTIR). Transmission electron microscopy (TEM), nanoparticle tracking and analysis sytem (NTA) and zeta potential was measured to detect the size of Ag-NPs. The antimicrobial activity of Ag-NPs was evaluated by disc diffusion method against the test organisms. Thus these Ag-NPs may prove as a better candidate drug due to their biogenic nature. Moreover, Ag-NPs may be an answer to the drug-resistant microorganisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short-chain fatty acids (SCFAs) are fermentation end products produced by the intestinal microbiota and have anti-inflammatory and histone deacetylase-inhibiting properties. Recently, a dual relationship between the intestine and kidneys has been unraveled. Therefore, we evaluated the role of SCFA in an AKI model in which the inflammatory process has a detrimental role. We observed that therapy with the three main SCFAs (acetate, propionate, and butyrate) improved renal dysfunction caused by injury. This protection was associated with low levels of local and systemic inflammation, oxidative cellular stress, cell infiltration/activation, and apoptosis. However, it was also associated with an increase in autophagy. Moreover, SCFAs inhibited histone deacetylase activity and modulated the expression levels of enzymes involved in chromatin modification. In vitro analyses showed that SCFAs modulated the inflammatory process, decreasing the maturation of dendritic cells and inhibiting the capacity of these cells to induce CD4(+) and CD8(+) T cell proliferation. Furthermore, SCFAs ameliorated the effects of hypoxia in kidney epithelial cells by improving mitochondrial biogenesis. Notably, mice treated with acetate-producing bacteria also had better outcomes after AKI. Thus, we demonstrate that SCFAs improve organ function and viability after an injury through modulation of the inflammatory process, most likely via epigenetic modification.