3 resultados para Neuroimaging
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Primary craniocervical dystonia (CCD) is generally attributed to functional abnormalities in the cortico-striato-pallido-thalamocortical loops, but cerebellar pathways have also been implicated in neuroimaging studies. Hence, our purpose was to perform a volumetric evaluation of the infratentorial structures in CCD. We compared 35 DYT1/DYT6 negative patients with CCD and 35 healthy controls. Cerebellar volume was evaluated using manual volumetry (DISPLAY software) and infratentorial volume by voxel based morphometry of gray matter (GM) segments derived from T1 weighted 3 T MRI using the SUIT tool (SPM8/Dartel). We used t-tests to compare infratentorial volumes between groups. Cerebellar volume was (1.14 ± 0.17) × 10(2) cm(3) for controls and (1.13 ± 0.14) × 10(2) cm(3) for patients; p = 0.74. VBM demonstrated GM increase in the left I-IV cerebellar lobules and GM decrease in the left lobules VI and Crus I and in the right lobules VI, Crus I and VIIIb. In a secondary analysis, VBM demonstrated GM increase also in the brainstem, mostly in the pons. While gray matter increase is observed in the anterior lobe of the cerebellum and in the brainstem, the atrophy is concentrated in the posterior lobe of the cerebellum, demonstrating a differential pattern of infratentorial involvement in CCD. This study shows subtle structural abnormalities of the cerebellum and brainstem in primary CCD.
Resumo:
Mutations in the SPG4 gene (SPG4-HSP) are the most frequent cause of hereditary spastic paraplegia, but the extent of the neurodegeneration related to the disease is not yet known. Therefore, our objective is to identify regions of the central nervous system damaged in patients with SPG4-HSP using a multi-modal neuroimaging approach. In addition, we aimed to identify possible clinical correlates of such damage. Eleven patients (mean age 46.0 ± 15.0 years, 8 men) with molecular confirmation of hereditary spastic paraplegia, and 23 matched healthy controls (mean age 51.4 ± 14.1years, 17 men) underwent MRI scans in a 3T scanner. We used 3D T1 images to perform volumetric measurements of the brain and spinal cord. We then performed tract-based spatial statistics and tractography analyses of diffusion tensor images to assess microstructural integrity of white matter tracts. Disease severity was quantified with the Spastic Paraplegia Rating Scale. Correlations were then carried out between MRI metrics and clinical data. Volumetric analyses did not identify macroscopic abnormalities in the brain of hereditary spastic paraplegia patients. In contrast, we found extensive fractional anisotropy reduction in the corticospinal tracts, cingulate gyri and splenium of the corpus callosum. Spinal cord morphometry identified atrophy without flattening in the group of patients with hereditary spastic paraplegia. Fractional anisotropy of the corpus callosum and pyramidal tracts did correlate with disease severity. Hereditary spastic paraplegia is characterized by relative sparing of the cortical mantle and remarkable damage to the distal portions of the corticospinal tracts, extending into the spinal cord.
Resumo:
The chronic treatment with phenytoin or the acute intoxication by this drug may cause permanent cerebellar injury with atrophy of cerebellum vermis and hemispheres, which can be detected by neuroimaging studies. The aim of the present study was to investigate the correlation between the dosage and duration of treatment with phenytoin and the occurrence of cerebellar atrophy. Sixty-six patients were studied and had their tomographies analyzed for cerebellar atrophy. Of the 66 patients studied, 18 had moderate/severe atrophy, 15 had mild atrophy and 33 were considered to be normal. The patients with moderate/severe atrophy were those with higher exposure to phenytoin (longer duration of treatment and higher total dosage) showing statistically significant difference when compared to patients with mild atrophy or without atrophy (p=0.02). Further, the patients with moderate/severe atrophy had serum levels of phenytoin statistically higher than those of patients with mild atrophy or without atrophy (p = 0.008). There was no association between other antiepileptic drugs dosage or duration of treatment and degree of cerebellar atrophy. We also found that older patients had cerebellar atrophy more frequently, indicating that age or duration of the seizure disorder may also be important in the determination of cerebellar degeneration in these patients. We conclude that although there is a possibility that repeated seizures contribute to cerebellar damage, long term exposure to phenytoin, particularly in high doses and toxic serum levels, cause cerebellar atrophy.