3 resultados para Nature inspired algorithms

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biocatalysis currently is focusing on enzymatic and multi-enzymatic cascade processes instead of single steps imbedded into chemical pathways. Alongside this scientific revolution, this review provides an overview on multi-enzymatic cascades that are responsible for the biosynthesis of some terpenes, alkaloids and polyethers, which are important classes of natural products. Herein, we illustrate the development of studies inspired by multi- and chemo-enzymatic approaches to build the core moieties of polyethers, polypeptide alkaloids, piperidines and pyrrolidines promoted by the joint action of oxidoreductases, hydrolases, cyclases, transaminases and imine reductases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract In this paper, we address the problem of picking a subset of bids in a general combinatorial auction so as to maximize the overall profit using the first-price model. This winner determination problem assumes that a single bidding round is held to determine both the winners and prices to be paid. We introduce six variants of biased random-key genetic algorithms for this problem. Three of them use a novel initialization technique that makes use of solutions of intermediate linear programming relaxations of an exact mixed integer-linear programming model as initial chromosomes of the population. An experimental evaluation compares the effectiveness of the proposed algorithms with the standard mixed linear integer programming formulation, a specialized exact algorithm, and the best-performing heuristics proposed for this problem. The proposed algorithms are competitive and offer strong results, mainly for large-scale auctions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After a long incubation period, the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) is now underway. Underpinning all its activities is the IPBES Conceptual Framework (CF), a simplified model of the interactions between nature and people. Drawing on the legacy of previous large-scale environmental assessments, the CF goes further in explicitly embracing different disciplines and knowledge systems (including indigenous and local knowledge) in the co-construction of assessments of the state of the world's biodiversity and the benefits it provides to humans. The CF can be thought of as a kind of Rosetta Stone that highlights commonalities between diverse value sets and seeks to facilitate crossdisciplinary and crosscultural understanding. We argue that the CF will contribute to the increasing trend towards interdisciplinarity in understanding and managing the environment. Rather than displacing disciplinary science, however, we believe that the CF will provide new contexts of discovery and policy applications for it.