13 resultados para NITRIC-OXIDE PRODUCTION
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Nitrogen assimilation plays a vital role in plant metabolism. Assimilation of nitrate, the primary source of nitrogen in soil, is linked to the generation of the redox signal nitric oxide (NO). An important mechanism by which NO regulates plant development and stress responses is through S-nitrosylation, that is, covalent attachment of NO to cysteine residues to form S-nitrosothiols (SNO). Despite the importance of nitrogen assimilation and NO signalling, it remains largely unknown how these pathways are interconnected. Here we show that SNO signalling suppresses both nitrate uptake and reduction by transporters and reductases, respectively, to fine tune nitrate homeostasis. Moreover, NO derived from nitrate assimilation suppresses the redox enzyme S-nitrosoglutathione Reductase 1 (GSNOR1) by S-nitrosylation, preventing scavenging of S-nitrosoglutathione, a major cellular bio-reservoir of NO. Hence, our data demonstrates that (S)NO controls its own generation and scavenging by modulating nitrate assimilation and GSNOR1 activity.
Resumo:
Pathological conditions associated with the impairment of nitric oxide (NO) production in the vasculature, such as Raynaud's syndrome and diabetic angiopathy, have stimulated the development of new biomaterials capable of delivering NO topically. With this purpose, we modified poly(vinyl-alcohol) (PVA) by chemically crosslinking it via esterification with mercaptosuccinic acid. This reaction allowed the casting of sulfhydrylated PVA (PVA-SH) films. Differential scanning calorimetry and X-ray diffractometry showed that the crosslinking reaction completely suppressed the crystallization of PVA, leading to a non-porous film with a homogeneous distribution of -SH groups. The remaining free hydroxyl groups in the PVA-SH network conferred partial hydrophylicity to the material, which was responsible for a swelling degree of ca. 110%. The PVA-SH films were subjected to an S-nitrosation reaction of the -SH groups, yielding a PVA containing S-nitrosothiol groups (PVA-SNO). Amperometric and chemiluminescence measurements showed that the PVA-SNO films were capable of releasing NO spontaneously after immersion in physiological medium. Laser Doppler-flowmetry, used to assess the blood flow in the dermal microcirculation, showed that the topical application of hydrated PVA-SNO films on the health skin led to a dose- and time-dependent increase of more than 5-fold in the dermal baseline blood flow in less than 10min, with a prolonged action of more than 4h during continuous application. These results show that PVA-SNO films might emerge as a new material with potential for the topical treatment of microvascular skin disorders.
Resumo:
Acute phase response modifies high-density lipoprotein (HDL) into a dysfunctional particle that may favor oxidative/inflammatory stress and eNOS dysfunction. The present study investigated the impact of this phenomenon on patients presenting ST-elevation myocardial infarction (STEMI). Plasma was obtained from 180 consecutive patients within the first 24-h of onset of STEMI symptoms (D1) and after 5 days (D5). Nitrate/nitrite (NOx) and lipoproteins were isolated by gradient ultracentrifugation. The oxidizability of low-density lipoprotein incubated with HDL (HDLaoxLDL) and the HDL self-oxidizability (HDLautox) were measured after CuSO4 co-incubation. Anti-inflammatory activity of HDL was estimated by VCAM-1 secretion by human umbilical vein endothelial cells after incubation with TNF-α. Flow-mediated dilation (FMD) was assessed at the 30(th) day (D30) after STEMI. Among patients in the first tertile of admission HDL-Cholesterol (<33 mg/dL), the increment of NOx from D1 to D5 [6.7(2; 13) vs. 3.2(-3; 10) vs. 3.5(-3; 12); p = 0.001] and the FMD adjusted for multiple covariates [8.4(5; 11) vs 6.1(3; 10) vs. 5.2(3; 10); p = 0.001] were higher than in those in the second (33-42 mg/dL) or third (>42 mg/dL) tertiles, respectively. From D1 to D5, there was a decrease in HDL size (-6.3 ± 0.3%; p < 0.001) and particle number (-22.0 ± 0.6%; p < 0.001) as well as an increase in both HDLaoxLDL (33%(23); p < 0.001) and HDLautox (65%(25); p < 0.001). VCAM-1 secretion after TNF-a stimulation was reduced after co-incubation with HDL from healthy volunteers (-24%(33); p = 0.009), from MI patients at D1 (-23%(37); p = 0.015) and at D30 (-22%(24); p = 0.042) but not at D5 (p = 0.28). During STEMI, high HDL-cholesterol is associated with a greater decline in endothelial function. In parallel, structural and functional changes in HDL occur reducing its anti-inflammatory and anti-oxidant properties.
Resumo:
The objective of this prospective study was to determine the plasma levels of nitric oxide (NO) in women with chronic pelvic pain secondary to endometriosis (n=24) and abdominal myofascial pain syndrome (n=16). NO levels were measured in plasma collected before and 1 month after treatment. Pretreatment NO levels (μM) were lower in healthy volunteers (47.0±12.7) than in women with myofascial pain (64.2±5.0, P=0.01) or endometriosis (99.5±12.9, P<0.0001). After treatment, plasma NO levels were reduced only in the endometriosis group (99.5±12.9 vs 61.6±5.9, P=0.002). A correlation between reduction of pain intensity and reduction of NO level was observed in the endometriosis group [correlation = 0.67 (95%CI = 0.35 to 0.85), P<0.0001]. Reduction of NO levels was associated with an increase of pain threshold in this group [correlation = -0.53 (-0.78 to -0.14), P<0.0001]. NO levels appeared elevated in women with chronic pelvic pain diagnosed as secondary to endometriosis, and were directly associated with reduction in pain intensity and increase in pain threshold after treatment. Further studies are needed to investigate the role of NO in the pathophysiology of pain in women with endometriosis and its eventual association with central sensitization.
Resumo:
Nitric oxide (NO)-mediated vasodilation plays a key role in gastric mucosal defense, and NO-donor drugs may protect against diseases associated with gastric mucosal blood flow (GMBF) deficiencies. In this study, we used the ex vivo gastric chamber method and Laser Doppler Flowmetry to characterize the effects of luminal aqueous NO-donor drug S-nitroso-N-acetylcysteine (SNAC) solution administration compared to aqueous NaNO2 and NaNO3 solutions (pH 7.4) on GMBF in Sprague-Dawley rats. SNAC solutions (600 μM and 12 mM) led to a rapid threefold increase in GMBF, which was maintained during the incubation of the solutions with the gastric mucosa, while NaNO2 or NaNO3 solutions (12 mM) did not affect GMBF. SNAC solutions (600 μM and 12 mM) spontaneously released NO at 37 °C at a constant rate of 0.3 or 14 nmol·mL-1·min-1, respectively, while NaNO2 (12 mM) released NO at a rate of 0.06 nmol·mL-1·min-1 and NaNO3 (12 mM) did not release NO. These results suggest that the SNAC-induced GMBF increase is due to their higher rates of spontaneous NO release compared to equimolar NaNO2 solutions. Taken together, our data indicate that oral SNAC administration is a potential approach for gastric acid-peptic disorder prevention and treatment.
Resumo:
PURPOSE: To evaluate the ocular surface toxicity of two nitric oxide donors in ex vivo and in vivo animal models: S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylcysteine (SNAC) in a hydroxypropyl methylcellulose (HPMC) matrix at final concentrations 1.0 and 10.0 mM. METHODS: Ex vivo GSNO and SNAC toxicities were clinically and histologically analyzed using freshly excised pig eyeballs. In vivo experiments were performed with 20 albino rabbits which were randomized into 4 groups (5 animals each): Groups 1 and 2 received instillations of 150 µL of aqueous HPMC solution containing GSNO 1.0 and 10.0 mM, respectively, in one of the eyes; Groups 3 and 4 received instillations of 150 µL of aqueous HPMC solution-containing SNAC 1.0 and 10.0 mM, respectively, in one of the eyes. The contralateral eyes in each group received aqueous HPMC as a control. All animals underwent clinical evaluation on a slit lamp and the eyes were scored according to a modified Draize eye test and were histologically analyzed. RESULTS: Pig eyeballs showed no signs of perforation, erosion, corneal opacity or other gross damage. These findings were confirmed by histological analysis. There was no difference between control and treated rabbit eyes according to the Draize eye test score in all groups (p>0.05). All formulations showed a mean score under 1 and were classified as non-irritating. There was no evidence of tissue toxicity in the histological analysis in all animals. CONCLUSION: Aqueous HPMC solutions containing GSNO and SNAC at concentrations up to 10.0 mM do not induce ocular irritation.
Resumo:
Taurine is a sulfur-containing amino acid that exerts protective effects on vascular function and structure in several models of cardiovascular diseases through its antioxidant and anti-inflammatory properties. Early protein malnutrition reprograms the cardiovascular system and is linked to hypertension in adulthood. This study assessed the effects of taurine supplementation in vascular alterations induced by protein restriction in post-weaning rats. Weaned male Wistar rats were fed normal- (12%, NP) or low-protein (6%, LP) diets for 90 days. Half of the NP and LP rats concomitantly received 2.5% taurine supplementation in the drinking water (NPT and LPT, respectively). LP rats showed elevated systolic, diastolic and mean arterial blood pressure versus NP rats; taurine supplementation partially prevented this increase. There was a reduced relaxation response to acetylcholine in isolated thoracic aortic rings from the LP group that was reversed by superoxide dismutase (SOD) or apocynin incubation. Protein expression of p47phox NADPH oxidase subunit was enhanced, whereas extracellular (EC)-SOD and endothelial nitric oxide synthase phosphorylation at Ser 1177 (p-eNOS) were reduced in aortas from LP rats. Furthermore, ROS production was enhanced while acetylcholine-induced NO release was reduced in aortas from the LP group. Taurine supplementation improved the relaxation response to acetylcholine and eNOS-derived NO production, increased EC-SOD and p-eNOS protein expression, as well as reduced ROS generation and p47phox expression in the aortas from LPT rats. LP rats showed an increased aortic wall/lumen ratio and taurine prevented this remodeling through a reduction in wall media thickness. Our data indicate a protective role of taurine supplementation on the high blood pressure, endothelial dysfunction and vascular remodeling induced by post-weaning protein restriction. The beneficial vascular effect of taurine was associated with restoration of vascular redox homeostasis and improvement of NO bioavailability.
Resumo:
Previous studies from our group have demonstrated the protective effect of S-nitroso-N-acetylcysteine (SNAC) on the cardiovascular system in dyslipidemic LDLr-/- mice that develop atheroma and left ventricular hypertrophy after 15 days on a high fat diet. We have shown that SNAC treatment attenuates plaque development via the suppression of vascular oxidative stress and protects the heart from structural and functional myocardial alterations, such as heart arrhythmia, by reducing cardiomyocyte sensitivity to catecholamines. Here we investigate the ability of SNAC to modulate oxidative stress and cell survival in cardiomyocytes during remodeling and correlation with β₂-AR signaling in mediating this protection. Ventricular superoxide (O₂⁻) and hydrogen peroxide (H₂O₂) generation was measured by HPLC methods to allow quantification of dihydroethidium (DHE) products. Ventricular histological sections were stained using terminal dUTP nick-end labeling (TUNEL) to identify nuclei with DNA degradation (apoptosis) and this was confirmed by Western blot for cleaved caspase-3 and caspase-7 protein expression. The findings show that O₂⁻ and H₂O₂ production and also cell apoptosis were increased during left ventricular hypertrophy (LVH). SNAC treatment reduced oxidative stress during on cardiac remodeling, measured by decreased H₂O₂ and O₂⁻ production (65% and 52%, respectively), and a decrease in the ratio of p-Ser1177 eNOS/total eNOS. Left ventricle (LV) from SNAC-treated mice revealed a 4-fold increase in β₂-AR expression associated with coupling change to Gi; β₂-ARs-S-nitrosation (β₂-AR-SNO) increased 61%, while apoptosis decreased by 70%. These results suggest that the cardio-protective effect of SNAC treatment is primarily through its anti-oxidant role and is associated with β₂-ARs overexpression and β₂-AR-SNO via an anti-apoptotic pathway.
Resumo:
To examine the influence of l-arginine supplementation in combination with physical training on mitochondrial biomarkers from gastrocnemius muscle and its relationship with physical performance. Male Wistar rats were divided into four groups: control sedentary (SD), sedentary supplemented with l-arginine (SDLA), trained (TR) and trained supplemented with l-arginine (TRLA). Supplementation of l-arginine was administered by gavage (62.5mg/ml/day/rat). Physical training consisted of 60min/day, 5days/week, 0% grade, speed of 1.2km/h. The study lasted 8weeks. Skeletal muscle mitochondrial enriched fraction as well as cytoplasmic fractions were obtained for Western blotting and biochemical analyses. Protein expressions of transcriptor coactivator (PGC-1α), transcriptor factors (mtTFA), ATP synthase subunit c, cytochrome oxidase (COXIV), constitutive nitric oxide synthases (eNOS and nNOS), Cu/Zn-superoxide dismutase (SOD) and manganese-SOD (Mn-SOD) were evaluated. We also assessed in plasma: lipid profile, glycemia and malondialdehyde (MDA) levels. The nitrite/nitrate (NOx(-)) levels were measured in both plasma and cytosol fraction of the gastrocnemius muscle. 8-week l-arginine supplementation associated with physical training was effective in promoting greater tolerance to exercise that was accompanied by up-regulation of the protein expressions of mtTFA, PGC-1α, ATP synthase subunit c, COXIV, Cu/Zn-SOD and Mn-SOD. The upstream pathway was associated with improvement of NO bioavailability, but not in NO production since no changes in nNOS or eNOS protein expressions were observed. This combination would be an alternative approach for preventing cardiometabolic diseases given that in overt diseases a profound impairment in the physical performance of the patients is observed.
Resumo:
The aim of this study was to investigate whether β-adrenoceptor (β-AR) overstimulation induced by in vivo treatment with isoproterenol (ISO) alters vascular reactivity and nitric oxide (NO) production and signaling in pulmonary arteries. Vehicle or ISO (0.3mgkg(-1)day(-1)) was administered daily to male Wistar rats. After 7days, the jugular vein was cannulated to assess right ventricular (RV) systolic pressure (SP) and end diastolic pressure (EDP). The extralobar pulmonary arteries were isolated to evaluate the relaxation responses, protein expression (Western blot), NO production (diaminofluorescein-2 fluorescence), and cyclic guanosine 3',5'-monophosphate (cGMP) levels (enzyme immunoassay kit). ISO treatment induced RV hypertrophy; however, no differences in RV-SP and EDP were observed. The pulmonary arteries from the ISO-treated group showed enhanced relaxation to acetylcholine that was abolished by the NO synthase (NOS) inhibitor N(ω)-nitro-l-arginine methyl ester (l-NAME); whereas relaxation elicited by sodium nitroprusside, ISO, metaproterenol, mirabegron, or KCl was not affected by ISO treatment. ISO-treated rats displayed enhanced endothelial NOS (eNOS) and vasodilator-stimulated phosphoprotein (VASP) expression in the pulmonary arteries, while phosphodiesterase-5 protein expression decreased. ISO treatment increased NO and cGMP levels and did not induce eNOS uncoupling. The present data indicate that β-AR overactivation enhances the endothelium-dependent relaxation of pulmonary arteries. This effect was linked to an increase in eNOS-derived NO production, cGMP formation and VASP content and to a decrease in phosphodiesterase-5 expression. Therefore, elevated NO bioactivity through cGMP/VASP signaling could represent a protective mechanism of β-AR overactivation on pulmonary circulation.
Resumo:
Sickle cell disease (SCD) is a genetic disorder characterized by the production of abnormal hemoglobin that polymerizes at low oxygen concentrations, causing the erythrocyte to adopt a sickle-shaped morphology. SCD pathophysiology is extremely complex and can lead to numerous clinical complications, including painful vaso-occlusive crises (VOC), end-organ damage, and a shortened lifespan. An impressive number of investigational drugs are currently in early stages of clinical development with prospects for use either as chronic therapies to reduce VOC frequency and end-organ damage in SCD or for use at the time of VOC onset. Many of these agents have been developed using a pathophysiological-based approach to SCD, targeting one or more of the mechanisms that contribute to the disease process. It is plausible that a multi-drug approach to treating the disease will evolve in the coming years, whereby hydroxyurea (HU) (the only drug currently FDA-approved for SCD) is used in combination with drugs that amplify nitric oxide signaling and/or counteract hemolytic effects, platelet activation and inflammation.
Resumo:
In our previous study, we have found that 5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridine-3-yl]-pyrimidin-4-ylamine (BAY 41-2272), a guanylate cyclase agonist, activates human monocytes and the THP-1 cell line to produce the superoxide anion, increasing in vitro microbicidal activity, suggesting that this drug can be used to modulate immune functioning in primary immunodeficiency patients. In the present work, we investigated the potential of the in vivo administration of BAY 41-2272 for the treatment of Candida albicans and Staphylococcus aureus infections introduced via intraperitoneal and subcutaneous inoculation. We found that intraperitoneal treatment with BAY 41-2272 markedly increased macrophage-dependent cell influx to the peritoneum in addition to macrophage functions, such as spreading, zymosan particle phagocytosis and nitric oxide and phorbol myristate acetate-stimulated hydrogen peroxide production. Treatment with BAY 41-2272 was highly effective in reducing the death rate due to intraperitoneal inoculation of C. albicans, but not S. aureus. However, we found that in vitro stimulation of peritoneal macrophages with BAY 41-2272 markedly increased microbicidal activities against both pathogens. Our results show that the prevention of death by the treatment of C. albicans-infected mice with BAY 41-2272 might occur primarily by the modulation of the host immune response through macrophage activation.
Resumo:
Avian Pathogenic Escherichia coli (APEC) strains are extra-intestinal E. coli that infect poultry and cause diseases. Nitrite is a central branch-point in bacterial nitrogen metabolism and is used as a cytotoxin by macrophages. Unlike nitric oxide (NO), nitrite cannot diffuse across bacterial membrane cells. The NirC protein acts as a specific channel to facilitate the transport of nitrite into Salmonella and E. coli cells for nitrogen metabolism and cytoplasmic detoxification. NirC is also required for the pathogenicity of Salmonella by downregulating the production of NO by the host macrophages. Based on an in vitro microarray that revealed the overexpression of the nirC gene in APEC strain SCI-07, we constructed a nirC-deficient SCI-07 strain (ΔnirC) and evaluated its virulence potential using in vivo and in vitro assays. The final cumulative mortalities caused by mutant and wild-type (WT) were similar; while the ΔnirC caused a gradual increase in the mortality rate during the seven days recorded, the WT caused mortality up to 24h post-infection (hpi). Counts of the ΔnirC cells in the spleen, lung and liver were higher than those of the WT after 48 hpi but similar at 24 hpi. Although similar number of ΔnirC and WT cells was observed in macrophages at 3 hpi, there was higher number of ΔnirC cells at 16 hpi. The cell adhesion ability of the ΔnirC strain was about half the WT level in the presence and absence of alpha-D-mannopyranoside. These results indicate that the nirC gene influences the pathogenicity of SCI-07 strain.